
a.
Interpretation: The concentrations of all the species at equilibrium needs to be calculated for the given reaction when 2.0 moles of pure
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:
a.

Answer to Problem 48E
Explanation of Solution
Given:
The reaction:
The concentration of
Substituting the values as:
The ICE table for the reaction is:
The expression for the equilibrium constant is:
Substituting the values:
Let the value of x be small so,
Solving for x:
Thus, the equilibrium concentration of all the species at equilibrium is:
Interpretation: The concentrations of all the species at equilibrium needs to be calculated for the given reaction when 2.0 moles of
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:

Answer to Problem 48E
Explanation of Solution
The concentration of
Substituting the values as:
So, the amount of NO and Cl2 is 2.0 M and 1.0 M respectively.
As the value of K is very small so the reverse reaction can be assumed to proceed to completion and generation 2.0 M of NOCl. So,
The ICE table for the reaction is:
The expression for the equilibrium constant is:
Substituting the values:
Let the value of x be small so,
Solving for x:
Thus, the equilibrium concentration of all the species at equilibrium is:
b.
Interpretation: The concentrations of all the species at equilibrium needs to be calculated for the given reaction when 1.0 mole of
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:
b.

Answer to Problem 48E
Explanation of Solution
The concentration of
Substituting the values as:
So, the amount of NOCl and NO is 1.0 M.
The ICE table for the reaction is:
The expression for the equilibrium constant is:
Substituting the values:
Let the value of x be small so,
Solving for x:
Thus, the equilibrium concentration of all the species at equilibrium is:
c.
Interpretation: The concentrations of all the species at equilibrium needs to be calculated for the given reaction when 3.0 moles of
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:
c.

Answer to Problem 48E
Explanation of Solution
The concentration of
Substituting the values as:
So, the amount of NO and Cl2 is 3.0 M and 1.0 M respectively.
As the value of K is very small so the reverse reaction can be assumed to proceed to completion and generation of NOCl takes place.
Since, the ratio of NO:Cl2is 3:1 instead of 2:1 so, Cl2 will limit the production of NOCl that is Cl2 is the limiting reagent. So, the Cl2 will react completely and amount of NO reacted will be 3.0 − 2.0 = 1.0 M and amount of NOCl formed will be 2.0 M.
The ICE table for the reaction is:
The expression for the equilibrium constant is:
Substituting the values:
Let the value of x be small so,
Solving for x:
Thus, the equilibrium concentration of all the species at equilibrium is:
d.
Interpretation: The concentrations of all the species at equilibrium needs to be calculated for the given reaction when 2.0 moles of
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:
d.

Answer to Problem 48E
Explanation of Solution
The concentration of
Substituting the values as:
As the value of K is very small so the reverse reaction can be assumed to proceed to completion and generation 4.0 M of NOCl. So,
The ICE table for the reaction is:
The expression for the equilibrium constant is:
Substituting the values:
Let the value of x be small so,
Solving for x:
Thus, the equilibrium concentration of all the species at equilibrium is:
e.
Interpretation: The concentrations of all the species at equilibrium needs to be calculated for the given reaction when the concentration of all the gases is 1.00 mol/L.
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:
e.

Answer to Problem 48E
Explanation of Solution
As the value of K is very small so the reverse reaction can be assumed to proceed to completion and generation of NOCl takes place.
Since, the ratio of NO:Cl2is 1:1 instead of 2:1 so, NO will limit the production of NOCl that is NO is the limiting reagent. So, the NO will react completely and amount of Cl2 reacted will be 1.0 − 0.5 = 0.5 M and amount of NOCl formed will be 1.0 + 1.0 = 2.0 M.
The ICE table for the reaction is:
The expression for the equilibrium constant is:
Substituting the values:
Let the value of x be small so,
Solving for x:
Thus, the equilibrium concentration of all the species at equilibrium is:
Want to see more full solutions like this?
Chapter 6 Solutions
EBK CHEMICAL PRINCIPLES
- A J то گای ه +0 Also calculate the amount of starting materials chlorobenzaldehyde and p-chloroacetophenone required to prepare 400 mg of the given chalcone product 1, 3-bis(4-chlorophenyl)prop-2-en-1-one molar mass ok 1,3-bis(4-Chlorophenyl) prop-2-en-1-one = 277.1591m01 number of moles= 0.400/277.15 = 0.00144 moles 2 x 0.00 144=0.00288 moves arams of acetophenone = 0.00144 X 120.16 = 0.1739 0.1739x2=0.3469 grams of benzaldehyde = 0.00144X106.12=0.1539 0.1539x2 = 0.3069 Starting materials: 0.3469 Ox acetophenone, 0.3069 of benzaldehyde 3arrow_forward1. Answer the questions about the following reaction: (a) Draw in the arrows that can be used make this reaction occur and draw in the product of substitution in this reaction. Be sure to include any relevant stereochemistry in the product structure. + SK F Br + (b) In which solvent would this reaction proceed the fastest (Circle one) Methanol Acetone (c) Imagine that you are working for a chemical company and it was your job to perform a similar reaction to the one above, with the exception of the S atom in this reaction being replaced by an O atom. During the reaction, you observe the formation of three separate molecules instead of the single molecule obtained above. What is the likeliest other products that are formed? Draw them in the box provided.arrow_forward3. For the reactions below, draw the arrows corresponding to the transformations and draw in the boxes the reactants or products as indicated. Note: Part A should have arrows drawn going from the reactants to the middle structure and the arrows on the middle structure that would yield the final structure. For part B, you will need to draw in the reactant before being able to draw the arrows corresponding to product formation. A. B. Rearrangement ΘΗarrow_forward
- 2. Draw the arrows required to make the following reactions occur. Please ensure your arrows point from exactly where you want to exactly where you want. If it is unclear from where arrows start or where they end, only partial credit will be given. Note: You may need to draw in lone pairs before drawing the arrows. A. B. H-Br 人 C Θ CI H Cl Θ + Br Oarrow_forward4. For the reactions below, draw the expected product. Be sure to indicate relevant stereochemistry or formal charges in the product structure. a) CI, H e b) H lux ligh Br 'Harrow_forwardArrange the solutions in order of increasing acidity. (Note that K (HF) = 6.8 x 10 and K (NH3) = 1.8 × 10-5) Rank solutions from least acidity to greatest acidity. To rank items as equivalent, overlap them. ▸ View Available Hint(s) Least acidity NH&F NaBr NaOH NH,Br NaCIO Reset Greatest acidityarrow_forward
- 1. Consider the following molecular-level diagrams of a titration. O-HA molecule -Aion °° о ° (a) о (b) (c) (d) a. Which diagram best illustrates the microscopic representation for the EQUIVALENCE POINT in a titration of a weak acid (HA) with sodium. hydroxide? (e)arrow_forwardAnswers to the remaining 6 questions will be hand-drawn on paper and submitted as a single file upload below: Review of this week's reaction: H₂NCN (cyanamide) + CH3NHCH2COOH (sarcosine) + NaCl, NH4OH, H₂O ---> H₂NC(=NH)N(CH3)CH2COOH (creatine) Q7. Draw by hand the reaction of creatine synthesis listed above using line structures without showing the Cs and some of the Hs, but include the lone pairs of electrons wherever they apply. (4 pts) Q8. Considering the Zwitterion form of an amino acid, draw the Zwitterion form of Creatine. (2 pts) Q9. Explain with drawing why the C-N bond shown in creatine structure below can or cannot rotate. (3 pts) NH2(C=NH)-N(CH)CH2COOH This bond Q10. Draw two tautomers of creatine using line structures. (Note: this question is valid because problem Q9 is valid). (4 pts) Q11. Mechanism. After seeing and understanding the mechanism of creatine synthesis, students should be ready to understand the first half of one of the Grignard reactions presented in a past…arrow_forwardPropose a synthesis pathway for the following transformations. b) c) d)arrow_forward
- The rate coefficient of the gas-phase reaction 2 NO2 + O3 → N2O5 + O2 is 2.0x104 mol–1 dm3 s–1 at 300 K. Indicate whether the order of the reaction is 0, 1, or 2.arrow_forward8. Draw all the resonance forms for each of the following molecules or ions, and indicate the major contributor in each case, or if they are equivalent. (4.5 pts) (a) PH2 سمةarrow_forward3. Assign absolute configuration (Rors) to each chirality center. a. H Nitz C. он b. 0 H-C. C H 7 C. ་-4 917-417 refs H 1つ ८ ડુ d. Но f. -2- 01 Ho -OH 2HNarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





