EE 98: Fundamentals of Electrical Circuits - With Connect Access
6th Edition
ISBN: 9781259981807
Author: Alexander
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 44P
A 100-mH inductor is connected in parallel with a 2-kΩ resistor. The current through the inductor is i(t) = 35e− 400t mA. (a) Find the voltage vL across the inductor. (b) Find the voltage vR across the resistor. (c) Does vR(t) + vL(t) = 0? (d) Calculate the energy stored in the inductor at t = 0.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
NEED HANDWRITTEN SOLUTION DO NOT USE CHATGPT
Find the overall impedance of the followingP=1000W pf=0.8(leading) Vrms=220VThe overall impedance in complex form R+jX
HANDWRITTEN SOLUTION NO
DO NOT USE AI NEED HANDWRITTEN SOLUTION
Chapter 6 Solutions
EE 98: Fundamentals of Electrical Circuits - With Connect Access
Ch. 6.2 - What is the voltage across a 4.5-F capacitor if...Ch. 6.2 - If a 10-F capacitor is connected to a voltage...Ch. 6.2 - The current through a 100-F capacitor is i(t) = 50...Ch. 6.2 - Figure 6.11 For Practice Prob. 6.4. An initially...Ch. 6.2 - Under dc conditions, find the energy stored in the...Ch. 6.3 - Find the equivalent capacitance seen at the...Ch. 6.3 - Find the voltage across each of the capacitors in...Ch. 6.4 - If the current through a 1-mH inductor is i(t) =...Ch. 6.4 - The terminal voltage of a 2-H inductor is v = 10(1...Ch. 6.4 - Determine vC, iL, and the energy stored in the...
Ch. 6.5 - Calculate the equivalent inductance for the...Ch. 6.5 - In the circuit of Fig. 6.34, i1(t) = 3e2t A. If...Ch. 6.6 - The integrator in Fig. 6.35(b) has R = 100 k, C =...Ch. 6.6 - The differentiator in Fig. 6.37 has R = 100 k and...Ch. 6.6 - Design an analog computer circuit to solve the...Ch. 6 - What charge is on a 5-F capacitor when it is...Ch. 6 - Capacitance is measured in: (a)coulombs (b)joules...Ch. 6 - When the total charge in a capacitor is doubled,...Ch. 6 - Can the voltage waveform in Fig. 6.42 be...Ch. 6 - The total capacitance of two 40-mF...Ch. 6 - In Fig. 6.43, if i = cos 4t and v = sin 4t, the...Ch. 6 - A 5-H inductor changes its current by 3 A in 0.2...Ch. 6 - If the current through a 10-mH inductor increases...Ch. 6 - Inductors in parallel can be combined just like...Ch. 6 - Prob. 10RQCh. 6 - If the voltage across a 7.5-F capacitor is 2te3t...Ch. 6 - A 50-F capacitor has energy w(t) = 10 cos2 377t J....Ch. 6 - Design a problem to help other students better...Ch. 6 - A voltage across a capacitor is equal to [2 2...Ch. 6 - The voltage across a 4-F capacitor is shown in...Ch. 6 - The voltage waveform in Fig. 6.46 is applied...Ch. 6 - At t = 0, the voltage across a 25-mF capacitor is...Ch. 6 - A 4-mF capacitor has the terminal voltage v=...Ch. 6 - The current through a 0.5-F capacitor is 6(1 et)...Ch. 6 - The voltage across a 5-mF capacitor is shown in...Ch. 6 - A 4-mF capacitor has the current waveform shown in...Ch. 6 - A voltage of 45e2000t V appears across a parallel...Ch. 6 - Find the voltage across the capacitors in the...Ch. 6 - Series-connected 20- and 60-pF capacitors are...Ch. 6 - Two capacitors (25 and 75 F) are connected to a...Ch. 6 - The equivalent capacitance at terminals a-b in the...Ch. 6 - Determine the equivalent capacitance for each of...Ch. 6 - Find Ceq in the circuit of Fig. 6.52 if all...Ch. 6 - Find the equivalent capacitance between terminals...Ch. 6 - Find the equivalent capacitance at terminals a-b...Ch. 6 - Determine the equivalent capacitance at terminals...Ch. 6 - Obtain the equivalent capacitance of the circuit...Ch. 6 - Using Fig. 6.57, design a problem that will help...Ch. 6 - In the circuit shown in Fig. 6.58 assume that the...Ch. 6 - (a)Show that the voltage-division rule for two...Ch. 6 - Three capacitors, C1 = 5 F, C2 = 10 F, and C3 = 20...Ch. 6 - Given that four 10-F capacitors can be connected...Ch. 6 - Obtain the equivalent capacitance of the network...Ch. 6 - Determine Ceq for each circuit in Fig. 6.61....Ch. 6 - Assuming that the capacitors are initially...Ch. 6 - If v(0) = 0, find v(t), i1(t), and i2(t) in the...Ch. 6 - In the circuit in Fig. 6.64, let is = 4.5e2t mA...Ch. 6 - Obtain the Thevenin equivalent at the terminals,...Ch. 6 - The current through a 25-mH inductor is 10et/2 A....Ch. 6 - An inductor has a linear change in current from...Ch. 6 - Design a problem to help other students better...Ch. 6 - The current through a 12-mH inductor is 4 sin 100t...Ch. 6 - The current through a 40-mH inductor is i(t)= 0,...Ch. 6 - The voltage across a 50-mH inductor is given by...Ch. 6 - The current through a 5-mH inductor is shown in...Ch. 6 - The voltage across a 2-H inductor is 20(1 e2t) V....Ch. 6 - If the voltage waveform in Fig. 6.67 is applied...Ch. 6 - The current in a 150-mH inductor increases from 0...Ch. 6 - A 100-mH inductor is connected in parallel with a...Ch. 6 - If the voltage waveform in Fig. 6.68 is applied to...Ch. 6 - Find vC, iL, and the energy stored in the...Ch. 6 - For the circuit in Fig. 6.70, calculate the value...Ch. 6 - Under steady-state dc conditions, find i and v in...Ch. 6 - Find the equivalent inductance of the circuit in...Ch. 6 - An energy-storage network consists of...Ch. 6 - Determine Leq at terminals a-b of the circuit in...Ch. 6 - Using Fig. 6.74, design a problem to help other...Ch. 6 - Find Leq at the terminals of the circuit in Fig....Ch. 6 - Find the equivalent inductance looking into the...Ch. 6 - Find Leq in each of the circuits in Fig. 6.77....Ch. 6 - Find Leq in the circuit of Fig. 6.78. Figure 6.78...Ch. 6 - Determine Leq that may be used to represent the...Ch. 6 - The current waveform in Fig. 6.80 flows through a...Ch. 6 - (a) For two inductors in series as in Fig....Ch. 6 - In the circuit of Fig. 6.82, io(0) = 2 A....Ch. 6 - Consider the circuit in Fig. 6.83. Find: (a) Leq,...Ch. 6 - Consider the circuit in Fig. 6.84. Given that v(t)...Ch. 6 - In the circuit of Fig. 6.85, sketch vo. Figure...Ch. 6 - The switch in Fig. 6.86 has been in position A for...Ch. 6 - The inductors in Fig. 6.87 are initially charged...Ch. 6 - The current i(t) through a 20-mH inductor is...Ch. 6 - An op amp integrator has R = 50 k and C = 0.04 F....Ch. 6 - A 6-V dc voltage is applied to an integrator with...Ch. 6 - An op amp integrator with R = 4 M and C = 1 F has...Ch. 6 - Using a single op amp, a capacitor, and resistors...Ch. 6 - Show how you would use a single op amp to generate...Ch. 6 - At t = 1.5 ms, calculate vo due to the cascaded...Ch. 6 - Show that the circuit in Fig. 6.90 is a...Ch. 6 - The triangular waveform in Fig. 6.91(a) is applied...Ch. 6 - An op amp differentiator has R = 250 k and C = 10...Ch. 6 - A voltage waveform has the following...Ch. 6 - The output vo of the op amp circuit in Fig....Ch. 6 - Prob. 78PCh. 6 - Figure 6.93 presents an analog computer designed...Ch. 6 - Design an analog computer to simulate the...Ch. 6 - Design an op amp circuit such that vo=10vs+2vsdt...Ch. 6 - Your laboratory has available a large number of...Ch. 6 - An 8-mH inductor is used in a fusion power...Ch. 6 - A square-wave generator produces the voltage...Ch. 6 - An electric motor can be modeled as a series...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Each branch of a three-phase star-connected load consists of a coil of resistance 4.2 Ω and reactance 5.6 Ω. The load is supplied at a line voltage of 400 V, 50 Hz. The total active power supplied to the load is measured by the two-wattmeter method. Draw a circuit diagram of the wattmeter connections and calculate their separate readings. Derive any formula used in your calculations. ANS: 13.1 kW, 1.71 kWarrow_forwardThree non-reactive loads are connected in delta across a three-phase, three-wire, 400 V supply in the following way: (i) 10 kW across R and Y lines; (ii) 6 kW across Y and B lines; (iii) 4 kW across B and R lines. Draw a phasor diagram showing the three line voltages and the load currents and determine: (a) the current in the B line and its phase relationship to the line voltage VBR; (b) the reading of a wattmeter whose current coils are connected in the B line and whose voltage circuit is connected across the B and R lines. The phase rotation is R–Y–B. Where would a second wattmeter be connected for the two-wattmeter method and what would be its reading? ANS: 21.8 A, 36°35′ lagging; 7 kW; 13 kWarrow_forwardNEED HANDWRITTEN SOLUTION DO NOT USE AI OR CHATGPTarrow_forward
- A factory has the following load with power factor of 0.85 lagging in each phase. Between the red and yellow phases 40 A, between the yellow and blue phases 50 A, and between the blue and red phases 60 A. If the supply is 415 V, three-phase, calculate the line currents. Draw a phasor diagram for phase and line quantities. Ensure to draw all necessary diagrams ANS: IR = 87.178<-68.380 A; IY = 78.102<-178.120 A; IB = 95.394<61.210 A.arrow_forwardAnswer question D only using by hand first darw cylinder then calculate show me starrow_forwardThe phase currents in a delta-connected three-phase load are as follows: between the red and yellow lines, 30 A at p.f. 0.707 leading; between the yellow and blue lines, 20 A at unity p.f.; between the blue and red lines, 25 A at p.f. 0.866 lagging. Calculate the line currents and draw the complete phasor diagram. ANS: 21.6 A in R, 49.6 A in Y, 43.5 A in Barrow_forward
- . Two wattmeters connected to measure the input to a balanced three-phase circuit indicate 2500 W and 500 W respectively. Find the power factor of the circuit: (a) when both readings are positive; (b) when the latter reading is obtained after reversing the con nections to the current-coil of one instrument. Draw the phasor and connection diagrams. ANS: 0.655, 0.359arrow_forwardExplain the advantage of connecting the low-voltage winding of distribution transformers in star. A factory has the following load with power factor of 0.9 lagging in each phase. Red phase 40 A, yellow phase 50 A and blue phase 60 A. If the supply is 400 V, three phase, four-wire, calculate the current in the neutral and the total active power. Draw a phasor diagram for phase and line quantities. Assume that, relative to the current in the red phase, the current in the yellow phase lags by 120° and that in the blue phase leads by 120°. ANS: 17.3 A, 31.2 kWarrow_forwardA three-phase, 400 V system has the following load connected in delta: between the red and yellow lines, a non-reactive resistor of 100 Ω; between the yellow and blue lines, a coil having a reactance of 60 Ω and negligible resistance; between the blue and red lines, a loss-free capacitor having a reactance of 130 Ω. Calculate: (a) the phase currents; (b) the line currents. Assume the phase sequence to be R–Y, Y–B and B–R. Also, draw the complete phasor diagram. ANS: 4.00 A, 6.67 A, 3.08 A, 6.85 A, 10.33 A, 5.8 Aarrow_forward
- With the aid of a circuit diagram, show that two wattmeters can be connected to read the total power in a three-phase, three-wire system. Two wattmeters connected to read the total power in a three-phase system supplying a balanced load read 10.5 kW and −2.5 kW respectively. Calculate the total active power. Drawing suitable phasor diagrams, explain the significance of: (a) equal wattmeter readings; (b) a zero reading on one wattmeter. ANS: 8 kWarrow_forwardA factory has the following load with power factor of 0.9 lagging in each phase. Red phase 40 A, yellow phase 50 A and blue phase 60 A. If the supply is 400 V, three-phase, four-wire, calculate the current in the neutral and the total active power. Draw a phasor diagram for phase and line quantities. Assume that, relative to the current in the red phase, the current in the yellow phase lags by 120° and that in the blue phase leads by 120°.arrow_forwardFundimentals of Energy Systems Q8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Capacitors Explained - The basics how capacitors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=X4EUwTwZ110;License: Standard YouTube License, CC-BY