Concept explainers
Find the slope
Answer to Problem 33P
The slope
The deflection
The slope
The deflection
Explanation of Solution
Given information:
The Young’s modulus (E) is 29,000 ksi.
The moment of inertia (I) is
Calculation:
Consider flexural rigidity EI of the beam is constant.
Show the free body diagram of the given beam as in Figure (1).
Refer Figure (1),
Consider upward is force is positive and downward force is negative.
Consider clockwise moment is negative and counterclockwise moment is positive.
Split the given beam into two sections such as AC and CE.
Consider the portion CE:
Draw the free body diagram of the portion CE as in Figure (2).
Refer Figure (2),
Consider a reaction at C and take moment about point C.
Determine the reaction at E;
Determine the reaction at support A;
Show the reaction of the given beam as in Figure (3).
Refer Figure (3),
Determine the moment at A:
Determine the bending moment at B;
Determine the bending moment at C;
Determine the bending moment at D;
Determine the bending moment at E;
Show the
Show the elastic curve diagram as in Figure (5).
Refer Figure (4),
Determine the slope at B;
Here, b is the width and h is the height of respective triangle.
Substitute 12 ft for
Substitute 29,000 ksi for E and
Hence, the slope at B is
Determine the deflection between A and B using the relation;
Here,
Substitute 12 ft for
Substitute 29,000 ksi for E and
Hence, the deflection at B is
To determine the slope at point E, it is necessary to determine the deflection at point C and the deflection between C and E.
Determine the deflection at C and A using the relation;
Substitute 12 ft for
Determine the deflection between C and E using the relation;
Substitute 12 ft for
Determine the slope at E using the relation;
Here,
Substitute
Determine the slope between D and E using the relation;
Here, b is the width and h is the height of respective triangle.
Substitute 12 ft for
Determine the slope at D using the relation;
Substitute
Substitute 29,000 ksi for E and
Hence, the slope at D is
Determine the deflection between D and E using the relation;
Here, b is the width and h is the height of respective rectangle and triangle.
Substitute 12 ft for
Determine the deflection at D using the relation;
Substitute 12 ft for
Substitute 29,000 ksi for E and
Hence, the deflection at point D is
Want to see more full solutions like this?
Chapter 6 Solutions
Structural Analysis (MindTap Course List)
- س (١) الشكل المرفق لقطعة أرض مستطيلة بعدها بالاتجاه الأفقي ١٢ متر ماهو مقياس الرسم لهذة الخارطة وماهو البعد بالاتجاه العمودي على الأرض . س (۲) ماهي انواع المساحة من حيث الدقة . س ۳) طريق يحتوي على ثلاث محطات المسافات بينهم متساوية المحطة الأولى A = 233457.8 متر المحطة الثانية 8 = 23.6+278 متر ماهي المحطة الاخيرة ) 12 marrow_forwardPlease solve with drawingarrow_forward止 Q.1 Using the lightest W section shape to design the compression member AB shown in Fig. below, the concentrated service dead load and live load is PD-40kips and PL 150kips respectively. The beams and columns are oriented about the major axis and the columns are braced at each story level for out-of-plan buckling. Assume that the same section is used for columns. Use Fy-50 ksi. 32456 Aarrow_forward
- 02. Design a W shape beam is used to support the loads for plastered floor, shown in Figure. Lateral bracing is supplied only at the ends. Depend LRFD and Steel Fy=50ksi. Note: The solution includes compute C, Check deflection at center of beam as well as shear capacity) B P10.5 P=140 W C Hing Hing 159 A 15.ftarrow_forward02. Design a W shape beam is used to support the loads for plastered floor, shown in Figure. Lateral bracing is supplied only at the ends. Depend LRFD and Steel Fy=50ksi. Note: The solution includes compute C, Check deflection at center of beam as well as shear capacity) B P10.5 P=140 W C Hing Hing 159 A 15.ftarrow_forwardName: Q.1 select the lightest W12 shape for column AB that support a service dead and live loads Po-150k and P-200k as shown in Figure. The beams and columns are oriented about the major axis and the columns are braced at top and mid-height using pinned end connections for out of plane buckling. ASTM A992 steel is used. Select the suitable answer below: I U B W18.76 8.00 All dimensions in feet 30.00 8091 B Parrow_forward
- Consider the structure shown in (Figure 1). Suppose that F = 2500 N. Figure 0.2 m 1500 N 0.2 m 30% 0.2 m B -0.2 m-0.2 m- F Part A Determine the resultant couple moment. Express your answer to three significant figures and include the appropriate units. Enter positive value if the moment is counterclockwise and negative value if the moment is clockwise. ΜΑ ? 1 of 1 MR = 2.85 kN⚫m √30° 1500 N AUG 16 Submit Previous Answers Request Answer Incorrect; Try Again; 28 attempts remaining Provide Feedback Next > A W 20 Aaarrow_forwardExample The 30-N force P is applied perpendicular to the portion BC of the bent bar. Determine the moment of P about point B and about point A. Ans: Mb= 48 N.m Ma= 81.941 N.m P = 30 N 1.6 m 45° B 1.6 marrow_forwardQ2. Write the flexibility matrix corresponding to coordinates 1 and 2 for the structures shown. 13 ans: l 4 11 3 [16 51 6EI 126EI 5 2 (a) A -1- 2 (b) A B Constant EI 2arrow_forward