![Structural Analysis (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781133943891/9781133943891_largeCoverImage.gif)
Concept explainers
Find the slope
![Check Mark](/static/check-mark.png)
Answer to Problem 16P
The slope at point B of the given beam using the direct moment-area method is
The deflection at point B of the given beam using the direct moment-area method is
The slope at point C of the given beam using the direct moment-area method is
The deflection at point C of the given beam using the direct moment-area method is
Explanation of Solution
Given information:
The Young’s modulus (E) is 29,000 ksi.
The moment of inertia (I) is
Calculation:
Consider flexural rigidity EI of the beam is constant.
Show the free body diagram of the given beam as in Figure (1).
Refer Figure 1,
Consider upward is positive and downward is negative.
Consider clockwise is negative and counterclowise is positive.
Since support C is a free end there is no reaction.
Determine the bending moment at A;
Determine the bending moment at B;
Determine the moment at D;
Determine the bending moment at C;
Show the
Elastic curve:
The sign of
Show the elastic curve diagram as in Figure (3).
The slope at point B can be calculated by evaluating the change in slope between A and B.
Express the change in slope using the first moment-area theorem as follows:
Here, b is the width of the respective triangle and rectangle and h is the height of the respective triangle and rectangle.
Substitute 10 ft for b,
Determine the slope at B using the relation;
Substitute
Hence, the slope at point B is
The deflection of B with respect to the undeforemd axis of the beam is equal to the tangential deviation of B from the tangent at A.
Express the deflection at B using the second moment-area theorem as follows:
Substitute 10 ft for b,
Determine the deflection at B using the relation;
Substitute
Hence, the deflection at B is
Express the change in slope using the first moment-area theorem as follows:
Here, b is the width and h is the height of the rectangle, triangle, and parabola.
Substitute
Determine the slope at C using the relation;
Substitute
Hence, the slope at point C is
The deflection of C with respect to the undeforemd axis of the beam is equal to the tangential deviation of C from the tangent at A.
Express the deflection at C using the second moment-area theorem as follows:
Determine the deflection at C using the relation;
Substitute
Hence, the deflection at C is
Want to see more full solutions like this?
Chapter 6 Solutions
Structural Analysis (MindTap Course List)
- FIND THE INTERNAL MISSING ANGLES AND MISSING SIDESOF A 90° RIGHT TRIANGLE WITH A HEIGHT OF 96 AND A BASE OF 48.DRAW A PROPORTIONAL SKETCH OF THE TRIANGLE, IDENTIFY GIVEN INFORMATIONAND LABEL MISSING INFORMATION. WHAT IS AREA TO THE NEAREST SQ. FT.?arrow_forward2,789.10 FEET = HOW MANY METERS (M)?arrow_forward87.74529° TO DEGREE‐MINUTE‐SECOND FORMATarrow_forward
- Draw shear and moment diagramarrow_forwardH.W. Solve problems in (Das) page 249 Problems 9.1, 9.3, and 9.5arrow_forward3. As the audio frequency of Fig. 11-7 goes down, what components of Fig. 12-4 must be modified for normal operation? OD C₂ 100 HF R₁ 300 Re 300 ww 100A R 8 Voc Rz 10k reset output 3 R7 8 Voc 3 reset output Z discharge VR₁ 5k 2 trigger 2 trigger 7 discharge R 3 1k 5 control voltage threshold 6 5 control voltage 6 threshold GND Rs 2k C. C. 100 GND Uz LM555 1 Ce 0.01 U, LM555 0.01 8.01.4 PRO Fig. 11-7 Audio lutput Pulse width modulator R4 1k ww C7 Re 1k ww R7 100 VR 50k 10μ Ra R10 C₁. R1 3.9k 3.9k 0.14 100k TO w Rs 51 82 3 H 10 Carrier U₁ Ca Input A741 2.2 Us MC1496 PWM signal input R2 0.1100k Uz A741 41 Cs 1 Re 10k VR2 50k VR3 100k 14 12 C3. 3% + Ce 0.1 10μ 5 1A HH C +12V 0.1 O PWM Output C 0.02- R 100k +12 V Demodulated output 6 Ca 0.33 w R 10k R12 100k ww 31 о + 4A741 -12 V Fig. 12-4 PWM demodulator C 1500parrow_forward
- By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-way slab shown in figure under a uniformly distributed load (w). m m 2000arrow_forwardDetermine the collapse load for the simply supported slab. 3 m 3 marrow_forwardm A square slab is simply supported along all sides and is to be isotropically reinforced. Determine the ultimate resisting moment (m) per linear meter required just to sustain a uniformly distributed load (w) in kN/m². marrow_forward
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)