Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 10P

A 380-kg piano slides 2.9 m down a 25° incline and is kept from accelerating by a man who is pushing back on it parallel to the incline (Fig. 6-36). Determine: (a) the force exerted by the man, (b) the work done on the piano by the man, (c) the work done on the piano by the force of gravity, and (d) the net work done on the piano. Ignore friction.

Chapter 6, Problem 10P, A 380-kg piano slides 2.9 m down a 25° incline and is kept from accelerating by a man who is pushing

Figure 6-36

Part (a)

Expert Solution
Check Mark
To determine

The force exerted by the man.

Answer to Problem 10P

Solution:1574 N

Explanation of Solution

Given:

A 380-kg piano slides 2.9 m down a 25° incline and is kept from accelerating by a man who is pushing back on it parallel to the incline.

Formula used:

By Newton’s second law of motion:

  F=ma

Where, m is the mass and a is the acceleration.

Calculation:

The various forces acting on the piano are shown in the figure.

  Physics: Principles with Applications, Chapter 6, Problem 10P , additional homework tip  1

The piano does not slide if applied force is F=mgsinθ

  F=380×9.8×sin25°

  F=380×9.8×0.4224F=1574N

Conclusion:The force exerted by the man is 1574 N.

Part(b)

Expert Solution
Check Mark
To determine

The work done on the piano by the man.

Answer to Problem 10P

Solution:The work done on the piano by the man is 4565J .

Explanation of Solution

Given:A 380-kg piano slides 2.9 m down a 25° incline and is kept from accelerating by a man who is pushing back on it parallel to the incline.

Formula used:

The work done on the piano by the man can be obtained by:

  W=Fd

Where, F is the applied force and d is the displacement.

Calculation:

The work done on the piano by the man,

  W=FdW=(mgsinθ)d

  W=1574×2.9W4565J

Conclusion:The work done on the piano by the man is 4565J .

Part (c)

Expert Solution
Check Mark
To determine

The work done on the piano by the force of gravity.

Answer to Problem 10P

Solution:The work done on the piano by the force of gravity is 4565J

Explanation of Solution

Given:A 380-kg piano slides 2.9 m down a 25° incline and is kept from accelerating by a man who is pushing back on it parallel to the incline.

Formula used:

The work done on the piano by force of gravity can be obtained by:

  W=Fd

Where, F is the applied force and d is the displacement.

Calculation:

The work done on the piano by the force of gravity is

  W=Fd=(mgsinθ)d

  W=1574×2.9W4565J

Conclusion:The work done on the piano by the force of gravity is 4565J .

Part (d)

Expert Solution
Check Mark
To determine

The net workdone on the piano.

Answer to Problem 10P

Solution:The net work done on the piano is zero.

Explanation of Solution

The various forces acting on the piano are shown in the figure.

  Physics: Principles with Applications, Chapter 6, Problem 10P , additional homework tip  2

Given:A 380-kg piano slides 2.9 m down a 25° incline and is kept from accelerating by a man who is pushing back on it parallel to the incline.

Formula used:

The work done on the piano by force of gravity can be obtained by:

  W=Fd

Where, F is the applied force and d is the displacement.

Calculation:

Since the net displacement of the piano is zero, the net work done on the piano is zero.

Conclusion:Thenet work done on the piano is zero.

Chapter 6 Solutions

Physics: Principles with Applications

Ch. 6 - A hill has a height h. A child on a sled (total...Ch. 6 - Analyze the motion of a simple swinging pendulum...Ch. 6 - In Fig. 6-31, water balloons are tossed from the...Ch. 6 - What happens to the gravitational potential energy...Ch. 6 - Experienced hikers prefer to step over a fallen...Ch. 6 - Prob. 16QCh. 6 - The energy transformations in pole vaulting and...Ch. 6 - Prob. 18QCh. 6 - 17. Two identical arrows, one with twice the speed...Ch. 6 - Prob. 20QCh. 6 - Prob. 21QCh. 6 - Describe the energy transformations that take...Ch. 6 - Prob. 23QCh. 6 - Prob. 24QCh. 6 - Prob. 25QCh. 6 - A 75.0-kg firefighter climbs a flight of stairs...Ch. 6 - The head of a hammer with a mass of 1.2 kg is...Ch. 6 - How much work did the movers do (horizontally)...Ch. 6 - A 1200-N crate rests on the floor. How much work...Ch. 6 - What is the minimum work needed to push a 950-kg...Ch. 6 - Estimate the work you do to mow a lawn 10 m by 20...Ch. 6 - In a certain library the first shelf is 15.0 cm...Ch. 6 - A lever such as that shown in Fig. 6-35 can be...Ch. 6 - A box of mass 4.0 kg is accelerated from rest by a...Ch. 6 - A 380-kg piano slides 2.9 m down a 25° incline and...Ch. 6 - Recall from Chapter 4, Example 4-14, that you can...Ch. 6 - A grocery cart with mass of 16 kg is being pushed...Ch. 6 - The force on a particle, acting along the x axis,...Ch. 6 - A 17,000-kg jet takes off from an aircraft carrier...Ch. 6 - At room temperature, an oxygen molecule, with mass...Ch. 6 - (a) If the kinetic energy of a particle is...Ch. 6 - How much work is required to stop an electron...Ch. 6 - How much work must be done to stop a 925-kg car...Ch. 6 - Prob. 19PCh. 6 - A baseball (m = 145 g) traveling 32 m/s moves a...Ch. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - 24. (Ill) One car has twice the mass of a second...Ch. 6 - 25. (Ill) A 265-kg load is lifted 18.0 m...Ch. 6 - 26. (I) By how much does the gravitational...Ch. 6 - A spring has a spring constant k of 88.0 N/m. How...Ch. 6 - Prob. 28PCh. 6 - 29. (II) A 66.5-kg hiker starts at an elevation of...Ch. 6 - Prob. 30PCh. 6 - A novice skier starting from rest, slides down an...Ch. 6 - 32. (I) Jane, looking for Tarzan, is running at...Ch. 6 - A sled is initially given a shove up a...Ch. 6 - Prob. 34PCh. 6 - 35. (II) A spring with k=83 N/m hangs vertically...Ch. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - 42. (II) What should be the spring constant k of a...Ch. 6 - 43. (Ill) An engineer is designing a spring to be...Ch. 6 - Prob. 44PCh. 6 - 45. (III) A cyclist intends to cycle up a 7.50°...Ch. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - 52. (II) You drop a ball from a height of 2.0 m,...Ch. 6 - 53. (II) A 66-kg skier starts from rest at the top...Ch. 6 - 54. (II) A projectile is fired at an upward angle...Ch. 6 - 55. (II) The Lunar Module could make a safe...Ch. 6 - 56. (III) Early test flights for the space shuttle...Ch. 6 - How long will It take a 2750-W motor to lift a...Ch. 6 - 58. (I) (a) Show that one British horsepower (550...Ch. 6 - An 85-kg football player traveling 5.0 m/s is...Ch. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - A shot-putter accelerates a 7.3-kg shot from rest...Ch. 6 - Prob. 63PCh. 6 - 64. (II) How much work can a 2.0-hp motor do in...Ch. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69PCh. 6 - 70. (II) What minimum horsepower must a motor have...Ch. 6 - Prob. 71PCh. 6 - Prob. 72GPCh. 6 - Prob. 73GPCh. 6 - Prob. 74GPCh. 6 - Prob. 75GPCh. 6 - Prob. 76GPCh. 6 - Prob. 77GPCh. 6 - Prob. 78GPCh. 6 - Prob. 79GPCh. 6 - Prob. 80GPCh. 6 - Prob. 81GPCh. 6 - Prob. 82GPCh. 6 - Prob. 83GPCh. 6 - Prob. 84GPCh. 6 - Prob. 85GPCh. 6 - Prob. 86GPCh. 6 - Prob. 87GPCh. 6 - Prob. 88GPCh. 6 - Prob. 89GPCh. 6 - Prob. 90GPCh. 6 - Prob. 91GPCh. 6 - Prob. 92GPCh. 6 - Prob. 93GPCh. 6 - Prob. 94GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY