
Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surroundings. The mixing process takes place at constant pressure with no work and negligible changes in kinetic and potential energies. Assume the gas has constant specific heats.
- (a) Determine the expression for the final temperature of the mixture in terms of the rate of heat transfer to the mixing chamber and the inlet and exit mass flow rates.
- (b) Obtain an expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber.
- (c) For the special case of adiabatic mixing, show that the exit volume flow rate is the sum of the two inlet volume flow rates.
(a)

The expression for the final temperature of the mixture in terms of the rate of the heat transfer to the mixing chamber and the inlet and exit mass flow rate.
Answer to Problem 89P
The expression for the final temperature of the mixture in terms of the rate of the heat transfer to the mixing chamber and the inlet and exit mass flow rate is shown below.
Explanation of Solution
Here, the two streams (comparatively hot and cold) of ideal gases are mixed in a rigid mixing chamber and operates at steady state. Hence, the inlet and exit mass flow rates are equal.
Write the energy rate balance equation for two inlet and one outlet system.
Here, the rate of heat transfer is
The system is at steady state. Hence, the rate of change in net energy of the system becomes zero.
Neglect the heat transfer, work transfer, kinetic and potential energies.
The Equation (II) reduced as follows.
It is given that the mixing chamber receives energy by heat transfer from the surrounding. Then the Equation (III) will become as follows.
The enthalpy is expressed as follows.
Here, the specific heat is
Rewrite the Equation (IV) in terms of specific heat and temperature.
Rearrange the Equation (V) to obtain the exit temperature
Thus, the expression for the final temperature of the mixture in terms of the rate of the heat transfer to the mixing chamber and the inlet and exit mass flow rate is shown below.
(b)

The expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber.
Answer to Problem 89P
The expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber is shown below.
Explanation of Solution
Write the formula for exit volume flow rate
Here, the mass flow rate is
Refer part (a) answer.
Substitute
Here, the mixing occurs at constant pressure.
Rewrite the Equation (VII) as follows.
From Equation (VIII),
Hence, Substitute
Thus, the expression for the volume flow rate at the exit of the mixing chamber in terms of the volume flow rates of the two inlet streams and the rate of heat transfer to the mixing chamber is shown below.
(c)

To show that the exit volume flow rate is the sum of the two inlet volume flow rates for the adiabatic process.
Answer to Problem 89P
The exit volume flow rate is the sum of the two inlet volume flow rates.
Explanation of Solution
Refer part (b) answer.
The exit volume flow rate is,
When, the mixing process is said to be an adiabatic process, the rate of heat in and out of the system become negligible.
Substitute
Thus, the exit volume flow rate is the sum of the two inlet volume flow rates.
Want to see more full solutions like this?
Chapter 5 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- A garden hose attached with a nozzle is used to fill a 20-gal bucket. The inner diameter of the hose is 1 in and it reduces to 0.53 in at the nozzle exit. The average velocity in the hose is 8 ft/s and the density of water is 62.4 lbm/ft3. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the volume and mass flow rates of water through the hose. The volume flow rate of water through the hose is ft3/s. The mass flow rate of water through the hose is lbm/s. The change in time? What is the exit velocity?arrow_forwardA 23-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final temperature. Use data from refrigerant tables. The final temperature is ºF.arrow_forwardA 23-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the heat transfer. The heat transfer is Btu.arrow_forward
- The shaft shown in the figure below is subjected to axial loads as illustrated. The diameters of segments AB, BC, and CD are 20mm, 25mm, and 15mm, respectively. If the modulus of elasticity of the material is 610 MPa. Determine the change of A to D lengtharrow_forwardDetermine the final pressure and temperature. The final pressure is kPa. The final temperature is ºC.arrow_forwardAir enters the 1-m2 inlet of an aircraft engine at 100 kPa and 20°C with a velocity of 184 m/s. Determine the volume flow rate, in m3/s, at the engine’s inlet and the mass flow rate, in kg/s, at the engine’s exit. The gas constant of air is R = 0.287 kPa·m3/kg·K. The volume flow rate at the engine’s inlet m3/s. The mass flow rate at the engine’s exit is kg/s.arrow_forward
- The ventilating fan of the bathroom of a building has a volume flow rate of 33 L/s and runs continuously. If the density of air inside is 1.20 kg/m3, determine the mass of air vented out in one day. The mass of air is kg.arrow_forwardA steady-flow compressor is used to compress helium from 15 psia and 70°F at the inlet to 200 psia and 600°F at the outlet. The outlet area and velocity are 0.01 ft2 and 100 ft/s, respectively, and the inlet velocity is 53 ft/s. Determine the mass flow rate and the inlet area. The gas constant of helium is R = 2.6809 psia·ft3/lbm·R. The mass flow rate is lbm/s. The inlet area is ft2.arrow_forward1. The maximum and minimum stresses as well as the shear stress seen subjected the piece in plane A-A. Assume it is a cylinder with a diameter of 12.7mm 2. Draw the Mohr circle for the stress state using software. 3. Selection of the material for the prosthesis, which must be analyzed from the point of safety and cost view.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





