Concept explainers
A 4-m × 5-m × 6-m room is to be heated by an electric resistance heater placed in a short duct in the room. Initially, the room is at 15°C, and the local atmospheric pressure is 98 kPa. The room is losing heat steadily to the outside at a rate of 150 kJ/min. A 200-W fan circulates the air steadily through the duct and the electric heater at an average mass flow rate of 40 kg/min. The duct can be assumed to be adiabatic, and there is no air leaking in or out of the room. If it takes 25 min for the room air to reach an average temperature of 25°C, find (a) the power rating of the electric heater and (b) the temperature rise that the air experiences each time it passes through the heater.
(a)
The power rating of the electric heater.
Answer to Problem 100P
The power rating of the electric heater is
Explanation of Solution
Consider the entire room as system and the air circulates the in the room itself. There is no leakage to the surrounding.
The air flows at steady state through one inlet and one exit system (pipe and duct flow). Hence, the inlet and exit mass flow rates are equal.
Write the energy balance equation.
Here, the heat transfer is
In this system two work inputs are involved namely, the work input to the electric heater
The Equations (I) reduced as follows.
Here, there is no mass leakage from the room to the surrounding. The mass of air circulates in the room itself. Hence, inlet and exit enthalpies are neglected.
The change in internal energy is expresses as follow.
Here, the specific heat at constant volume is
Neglect the inlet and exit enthalpies and substitute
Equation (II).
Express the Equation (III) with respect to change of time and rearrange it to obtain
Write the formula for mass of air
The mass flow rate
Here, the change in time or time interval is
Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.
The gas constant of air
Refer Table A-2, “Ideal-gas specific heats of various common gases”.
The specific heat at constant volume
Conclusion:
Substitute
Substitute
Substitute
Thus, the power rating of the electric heater is
(b)
The temperature rise that the air experiences each time it passes through the heater.
Answer to Problem 100P
The temperature rise that the air experiences each time it passes through the heater is
Explanation of Solution
Consider the heating duct with fan and heater only as the system. The air passes through in it steadily.
The system is at steady state. Hence, the rate of change in net energy of the system becomes zero.
The heating duct is an adiabatic duct. Hence, there is no heat loss.
The Equations (II) reduced as follows.
Express the Equation (VII) with respect to change of time as follows.
The change in enthalpy is expresses as follow.
Here, the specific heat at constant pressure is
Substitute
Refer Table A-2, “Ideal-gas specific heats of various common gases”.
The specific heat at constant pressure
Conclusion:
Substitute
Thus, the temperature rise that the air experiences each time it passes through the heater is
Want to see more full solutions like this?
Chapter 5 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- Steam enters the condenser of a steam power plant at 20000 kPa and a quality of 95 percent with a mass flow rate of 20 Mg/h. It is to be cooled by water from a nearby river in circulating the water through the tubes within the condenser. To prevent thermal pollution, the river water is not allowed to experience a temperature rise above 10°C. If the steam is to leave the condenser as saturated liquid at 20000 Pa, determine the mass flow rate of the cooling water required. m = 20,000 kg/h P = 20 kPa = 0.95 %3D Steam Water T+ 10°C P = 20 kPa Sat. liquidarrow_forwardSteam enters the condenser of a steam power plant at 50 kPa and a quality of 85 percent with a mass flow rate of 400 kg/min. It is to be cooled by water from a nearby river by circulating the water through the tubes within the condenser. To prevent thermal pollution, the river water is not allowed to experience a temperature rise above 20°C. If the steam is to leave the condenser as saturated liquid at 50 kPa, determine the mass flow rate of the cooling water required.arrow_forwardA variable-load piston-cylinder device contains air (cp = 1.005 kJ/kgK; cv = 0.718 kJ/kgK) at 500 kPa and T=12 oC. A paddle wheelequipped within the system and turned by an external electric motor until 65 kJ/kg of work has been transferred to the air. During this process the gas volume is quadrupled while maintaining the temperature constant by transferring heat to the gas. Determine (a) the final pressure, (b) the amount of required heattransfer (c) Show this process on a P-v diagram. Do not use Table A-17 while solving this problem. YOUR ANSWER SHEET SHOULD INCLUDE THE SOLUTION AND THE TABLE BELOW (a) Pinal [kPa] = (b) q [kJ/kg]arrow_forward
- Determine the rate of heat released (in kW) by the steam with 88.0% quality thatenters the evaporator at 1800 kg/h at 132C and exits as a subcooled liquid at 100C.Assume that the condensate outlet pressure is the same as the steam inlet pressure.The specific heat of liquid water is 4.187 kJ/kg-Carrow_forwardThe Refrigerating Effect of 94 tons of refrigeration is 127.75 kJ/kg. Determine the mass flow rate of the refrigerant.arrow_forwardA refrigeration system is to cool bread loaves with an average mass of 390 g from 30°C to -10°C at a rate of 1200 loaves per hour with refrigerated air at -30°C. Take the average specific and latent heats of bread to be 2.93 kJ/kg-°C and 109.3 kJ/kg. Determine the required volume flow rate of air, in m³/h, if the temperature rise of air is not to exceed 8°C. (You must provide an answer before moving to the next part.) m³/h. The required volume flow rate of air isarrow_forward
- Steam enters the condenser of a steam power plant at 20 kPa as asaturated vapor with a mass flow rate of 20,000 kg/h. It is to be cooled by water from anearby river by circulating the water through the tubes within the condenser. To preventthermal pollution, the river water is not allowed to experience a temperature rise above10°C. If the steam is to leave the condenser as saturated liquid at 20 kPa, determine(a) the mass flow rate of the cooling water required, and(b) rate of heat loss from the steam.(c) show the process for the steam on a ?-v diagramarrow_forwardIt is well known that the power consumed by a compressor can be reduced by cooling the gas during compression. Inspired by this, somebody proposes to cool the liquid as it flows through a pump, in order to reduce the power consumption of the pump. Would you support this proposal? Explain.arrow_forwardA refrigerant unit used in an air conditioning unit using R-134a as a refrigerant is mounted in the window of a room. During steady operation 1.5 kW of heat is transferred from the air in the room to evaporator coils of R-134a. If this air is at 22°C and the temperature of R-134a in the evaporator is 15°C, determine, (a) the refrigerant flow rate, and (b) the minimum power required to drive the compressor if the outside air is at 43°C and the temperature of the refrigerant during condensation is 50°C.arrow_forward
- A variable-load piston-cylinder device contains air (cp = 1.005 kJ/kgK; cv = 0.718 kJ/kgK) at 500 kPa and T=18 oC. A paddle wheel equipped within the system and turned by an external electric motor until 65 kJ/kg of work has been transferred to the air. During this process the gas volume is quadrupled while maintaining the temperature constant by transferring heat to the gas. Determine (a) the final pressure, (b) the amount of required heat transfer (c) Show this process on a P-v diagram. Do not use Table A-17 while solving this problemarrow_forwardA steam turbine operates with 2 MPa and 400°C steam at its inlet and saturatedvapor at 40°C at its exit. The mass flow rate of the steam is 25 kg/s, and the turbine produces 12MW of power. Determine the rate at which heat is lost through the casing of this turbine.(Answer: 4872.5 kW)arrow_forwardA desktop computer is to be cooled by a fan. The electronic components of the computer consume 80 W of power under full-load conditions. The computer is to operate in environments at temperatures up to 50°C and at elevations up to 3000 m where the atmospheric pressure is 70.12 kPa. The exit temperature of air is not to exceed 60°C to meet the reliability requirements. Also, the average velocity of air is not to exceed 120 m/min at the exit of the computer case, where the fan is installed to keep the noise level down. Specify the flow rate of the fan that needs to be installed and the diameter of the casing of the fan.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY