
Concept explainers
Interpretation:
“Delta plus” symbol is assigned to what type of atom in a polar covalent bond has to be chosen from the given options.
Concept Introduction:
Close relationship between ionic and covalent bonding models becomes apparent if the bond polarity and electronegativity is considered. Electronegativity is the measure of relative attractive for the shared pair of electrons in a bond. Higher the electronegative value for an atom, the more it attracts the shared pair of electrons towards itself.
In Periodic table, when moving from left to right in a period, the electronegativity value increases. While moving from top to bottom within group, the electronegativity value decreases. Nonmetals have higher electronegativity values than metals. Metals gives electrons and nonmetals accepts electrons.
Bond polarity is the degree of inequality in the electron pair sharing between two atoms in a
The ionic and covalent bonds can be identified by using the electronegativity difference between the atoms that are bonded together.
- Bonds that are formed between two similar electronegative atoms are known as nonpolar covalent bonds. The electronegativity difference has to be 0.4 or less.
- The bonds that have electronegativity difference greater than 0.4 and lesser than 1.5 are known as polar covalent bonds.
- If the electronegativity difference is more than 2.0, then the bond is considered to be ionic.
- If the electronegativity difference is between 1.5 to 2.0, then the bond can be ionic or covalent depending upon the type of atoms that is bonded. If the bond is between a metal and nonmetal, then it is ionic and if it is between two nonmetals then it is polar covalent.

Trending nowThis is a popular solution!

Chapter 5 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- Steps and explanation please. Add how to solve or target similar problems.arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardThis organic molecule is dissolved in an acidic aqueous solution: OH OH A short time later sensitive infrared spectroscopy reveals the presence of a new C = O stretch absorption. That is, there must now be a new molecule present with at least one C = O bond. In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule. Videos 849 Explanation Check C Click and drag to start dwing a structure. # 3 MAR 23 Add/Remove steparrow_forward||| 7:47 ull 57% ← Problem 19 of 48 Submit Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the product of this carbocation rearrangement. Include all lone pairs and charges as appropriate. H 1,2-alkyl shift +arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardBelow is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide (OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 5th attempt Please draw all four bonds at chiral centers. Draw the two enantiomeric products that will be produced. Draw in any hydrogen at chiral centers. 1000 4th attempt Feedback Please draw all four bonds at chiral centers. 8. R5 HO: See Periodic Table See Hint H Cl Br Jid See Periodic Table See Hintarrow_forwardShow that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.arrow_forward(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.arrow_forwardCan I please get help with #3 & 4? Thanks you so much!arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,

