Hermaphroditism (a) is a form of asexual reproduction (b) occurs when an unfertilized egg develops into an adult animal (c) is a form of sexual reproduction in which an animal produces both eggs and sperm (d) typically involves self-fertilization (e) typically requires only a male animal
Introduction: Reproduction is the process by which the organisms propagate their species by the union of the male and females gametes in the case of sexual reproduction or by asexual means which do not involves male and female gametes. Sexual reproduction and asexual reproduction are the two types of reproduction.
Answer to Problem 1TYU
Correct answer: Hermaphroditism is a form of sexual reproduction in which an animal produces both eggs and sperm.
Hence, the correct answer is option (c).
Explanation of Solution
Reason for the correct answer:
Hermaphroditism is a form of sexual reproduction in which an organism has both male and female reproductive systems. They produce both male and female gametes, so any two organisms can mate with any organism and can even self-fertilize. In hermaphrodites, the gametes produced by meiosis have different genetic makeup than the parent organism. It is an adaptation that came during evolution to cope with the challenge of finding a partner, and it became dominant with time. The examples for hermaphrodites include earthworms, snails, and flowering plants.
Option (c) is given as “is a form of sexual reproduction in which an animal produces both eggs and sperm”.
In Hermaphroditism, each individual has both male and female reproductive systems. Thus, it produces both types of gametes (egg and sperm).
Hence, the correct answer is option (c).
Reasons for the incorrect answers:
Option (a) is given as “is a form of asexual reproduction”.
Asexual reproduction is one of the types of reproduction where a single parent produces offspring with identical set of genes. Hermaphroditism is a form of sexual reproduction and not asexual reproduction.
Hence, option (a) is incorrect.
Option (b) is given as “occurs when an unfertilized egg develops into an adult animal”.
The development or growth of the embryo from an egg without fertilization is called as parthenogenesis. It is not a type of sexual reproduction.
Hence, option (b) is incorrect.
Option (d) is given as “typically involves self-fertilization”.
Self-fertilization occurs in a few of hermaphrodite. Self-fertilization is usually prevented in hermaphrodites by developing ovaries and testes at different times.
Hence, option (d) is incorrect.
Option (e) is given as “typically requires only a male animal”.
A hermaphrodite produces both types of gametes (egg and sperm). Thus, they are not referred to a single male animal.
Hence, option (e) is incorrect.
Hence, the options (a), (b), (d), and (e) are incorrect.
In hermaphroditism, each animal produces both types of gametes (egg and sperm).
Want to see more full solutions like this?
Chapter 50 Solutions
Biology (MindTap Course List)
- UARDIAN SIGNA Life Sciences/ Baseline Test Grade 10 ry must be written in point form. pot in full sentences using NO MORE than 70 words sentences from 1 to 7. only ONE point per sentence. words as far as possible. number of words you have used in brackets at the end GDE/2024 QUESTION 3 The table below shows the results of an investigation in which the effect of temperature and light on the yield of tomatoes in two greenhouses on a farm was investigated. TEMPERATURE (°C) AVERAGE YIELD OF TOMATOES PER 3.1 PLANT (kg) LOW LIGHT LEVELS HIGH LIGHT LEVELS 5 0,5 0,5 10 1,5 2,5 15 3,0 5,0 20 3,6 8,5 25 3,5 7,8 30 2,5 6,2 State TWO steps the investigator may have taken into consideration during the planning stage of the investigation. (2) 3.2 Identify the: a) Independent variables (2) b) Dependent variable (1) 3.3 Plot a line graph showing the results of the average yield of the tomatoes from 5°C to 30°C for low light levels. (6) 3.4 State ONE way in which the scientists could have improved the…arrow_forwardExplain why you chose this mutation. Begin by transcribing and translating BOTH the normal and abnormal DNA sequences. The genetic code below is for your reference. SECOND BASE OF CODON כ FIRST BASE OF CODON O THIRD BASE OF CODON SCAGUCAGUGAGUCAG UUU UUC UCU UAU UGU Phenylalanine (F) Tyrosine (Y) Cysteine (C) UCC UAC UGC Serine (S) UUA UUG Leucine (L) UCA UCG_ UAA UGA Stop codon -Stop codon UAG UGG -Tryptophan (W) CUU CUC CCU CAU CGU Histidine (H) CCC CAC CGC -Leucine (L) Proline (P) CUA CCA CAA CUG CCG CAG-Glutamine (Q) -Arginine (R) CGA CGG AUU ACU AAU AGU AUC Isoleucine (1) Asparagine (N) ACC AAC Threonine (T) AUA ACA AAA Methionine (M) Lysine (K) AUG ACG Start codon AAG AGC-Serine (S) -Arginine (R) AGA AGG GUU GCU GAU GUC GUA GUG GCC Valine (V) -Alanine (A) GCA GCG GAC GAA GAG Aspartic acid (D) GGU Glutamic acid (E) GGC GGA GGG Glycine (G) In order to provide a complete answer to the question stated above, fill in the mRNA bases and amino acid sequences by using the Genetic Code…arrow_forwardidentify the indicated cell in white arrowarrow_forward
- Gloeocaspa Genus - diagram a colony and label the sheath, cell wall, and cytoplasm. Oscillatoria Genus - Diagram a trichome, and label the shealth and individual cells Nostoc Genus- diagram a sketch of the colonoy microscopically from low power to the left of the drawing. Draw a filament showing intercalary heterocysts, and vegatative cells to the right of the drawing Merismopedia Genus- diagram a sketch of the colony. draw and label a filament showing the colony, cell wall, and sheath. Gloeotrichia Genus- diagram a habit sketch of the colony. draw a filament showing the heterocyst, akimetes and vegatative cells of the filamentarrow_forwardOf this list shown, which genus does the image belong toarrow_forwardidentify the cell shownarrow_forward
- identify the genusarrow_forwardWhat Genus is this?arrow_forwardAs a medical professional, it is important to be able to discuss how genetic processes such as translation regulation can directly affect patients. Think about some situations that might involve translation regulation. Respond to the following in a minimum of 175 words: Why is translation regulation important? What are some examples of translation regulation in humans? Select one of the examples you provided and explain what happens when translation regulation goes wrong.arrow_forward
- The metabolic pathway below is used for the production of the purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) in eukaryotic cells. Assume each arrow represents a reaction catalyzed by a different enzyme. Using the principles of feedback inhibition, propose a regulatory scheme for this pathway that ensures an adequate supply of both AMP and GMP, and prevents the buildup of Intermediates A through G when supplies of both AMP and GMP are adequate.arrow_forwardQUESTION 27 Label the structures marked A, B, C and explain the role of structure A. W plasma membrane For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS ☐ Paragraph Π " ΩΘΗ Β Open Sans, a... 10pt EEarrow_forwardexamples of synamptomorphyarrow_forward
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax
- Human Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningHuman Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning