University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.99P
Bunked Curve I. A curve with a 120-m radius on a level road is banked at the correct angle for a speed of 20 m/s. If an automobile rounds this curve at 30 m/s, what is the minimum coefficient of static friction needed between tires and road to prevent skidding?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A flat unbanked curve on a highway has a radius of 250 m. What is the maximum speed in m / s a car can turn around the curve without sliding if the coefficient of static friction between the tire and the road is 0.95?
A car is moving with a constant speed 17.4 m/s around a level curve. The coefficient of static friction between the tires and the road is 0.5. What is the minimum radius of the curve if the car is to stay on the road? Round your answer to the nearest meter.
car travels at a steady 40.5 m/s around a horizontal curve of radius 251 m. What is the minimum coefficient of
static friction between the road and the car's tires that will allow the car to travel at this speed without sliding?
Chapter 5 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 5.1 - A traffic light of weight w hangs from two...Ch. 5.2 - Suppose you hold the glider in Example 5.12 so...Ch. 5.3 - Consider a box that is placed on different...Ch. 5.4 - Satellites are held in orbit by the force of our...Ch. 5 - A man sits in a seat that is hanging from a rope....Ch. 5 - In general, the normal force is not equal to the...Ch. 5 - A clothesline hangs between two poles. No matter...Ch. 5 - You drive a car up a steep hill at constant speed....Ch. 5 - For medical reasons, astronauts in outer space...Ch. 5 - To push a box up a ramp, which requires less...
Ch. 5 - A woman in an elevator lets go of her briefcase,...Ch. 5 - A block rests on an inclined plane with enough...Ch. 5 - A crate slides up an inclined ramp and then slides...Ch. 5 - A crate of books rests on a level floor. To move...Ch. 5 - In a world without friction, which of the...Ch. 5 - When you stand with bare feet in a wet bathtub,...Ch. 5 - You are pushing a large crate from the back of a...Ch. 5 - It is often said that friction always opposes...Ch. 5 - If there is a net force on a particle in uniform...Ch. 5 - A curve in a road has a bank angle calculated and...Ch. 5 - You swing a ball on the end of a lightweight...Ch. 5 - The centrifugal force is not included in the...Ch. 5 - A professor swings a rubber stopper in a...Ch. 5 - To keep the forces on the riders within allowable...Ch. 5 - A tennis ball drops from rest at the top of a tall...Ch. 5 - You throw a baseball straight upward with speed 0....Ch. 5 - You throw a baseball straight upward. If you do...Ch. 5 - You have two identical tennis balls and fill one...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - When a balled baseball moves with air drag, when...Ch. 5 - A ball is thrown from the edge of a high cliff....Ch. 5 - Two 25.0-N weights are suspended at opposite ends...Ch. 5 - In Fig. E5.2 each of the suspended blocks has...Ch. 5 - A 75.0-kg wrecking ball hangs from a uniform,...Ch. 5 - BIO Injuries to the Spinal Column. In the...Ch. 5 - A picture frame hung against a wall is suspended...Ch. 5 - A large wrecking ball is held in place by two...Ch. 5 - Find the tension in each cord in Fig. E5.7 if the...Ch. 5 - A 1130-kg car is held in place by a light cable on...Ch. 5 - A man pushes on a piano with mass 180 kg; it...Ch. 5 - In Fig. E5.10 the weight w is 60.0 N. (a) What is...Ch. 5 - BIO Stay Awake! An astronaut is inside a 2.25 106...Ch. 5 - A rocket of initial mass 125 kg (including all the...Ch. 5 - CP Genesis Crash. On September 8, 2004, the...Ch. 5 - Three sleds are being pulled horizontally on...Ch. 5 - Atwoods Machine. A 15.0-kg load of bricks hangs...Ch. 5 - CP An 8.00-Kg block of ice, released from rest at...Ch. 5 - A light rope is attached to a block with mass 4.00...Ch. 5 - CP Runway Design. A transport plane lakes off from...Ch. 5 - CP A 750.0-kg boulder is raised from a quarry 125...Ch. 5 - Apparent Weight. A 550-N physics student stands on...Ch. 5 - CP BIO Force During a Jump. When jumping straight...Ch. 5 - CP CALC A 2540-kg test rocket is launched...Ch. 5 - CP CALC A 2.00-kg box is moving to the right with...Ch. 5 - CP CALC A 5.00-kg crate is suspended from the end...Ch. 5 - BIO The Trendelenburg Position. After emergencies...Ch. 5 - In a laboratory experiment on friction, a 135-N...Ch. 5 - CP A stockroom worker pushes a box with mass 16.8...Ch. 5 - A box of bananas weighing 40.0 N rests on a...Ch. 5 - A 45.0-kg crate of tools rests on a horizontal...Ch. 5 - Some sliding rocks approach the base of a hill...Ch. 5 - A box with mass 10.0 kg moves on a ramp that is...Ch. 5 - A pickup truck is carrying a toolbox, but the rear...Ch. 5 - You are lowering two boxes, one on top of the...Ch. 5 - Consider the system shown in Fig. E5.34. Block A...Ch. 5 - CP Stopping Distance. (a) If the coefficient of...Ch. 5 - CP A 25.0-kg box of textbooks rests on a loading...Ch. 5 - Two crates connected by a rope lie on a horizontal...Ch. 5 - A box with mass m is dragged across a level floor...Ch. 5 - CP As shown in Fig. E5.34, block A (mass 2.25 kg)...Ch. 5 - You throw a baseball straight upward. The drag...Ch. 5 - A large crate with mass m rests on a horizontal...Ch. 5 - (a) In Example 5.18 (Section 5.3), what value of D...Ch. 5 - A stone with mass 0.80 kg is attached to one end...Ch. 5 - BIO Force on a Skaters Wrist. A 52-kg ice skater...Ch. 5 - A small remote-controlled car with mass 1.60 kg...Ch. 5 - 5.46A small car with mass 0.800 kg travels at...Ch. 5 - A small model car with mass m travels at constant...Ch. 5 - A flat (unbanked) curve on a highway has a radius...Ch. 5 - A 1125-kg car and a 2250-kg pickup truck approach...Ch. 5 - The Giant Swing at a county fair consists of a...Ch. 5 - In another version of the Giant Swing (see...Ch. 5 - A small button placed on a horizontal rotating...Ch. 5 - Rotating Space Stations. One problem for humans...Ch. 5 - The Cosmo Clock 21 Ferris wheel in Yokohama,...Ch. 5 - An airplane flies in a loop (a circular path in a...Ch. 5 - A 50.0-kg stunt pilot who has been diving her...Ch. 5 - Stay Dry! You tie a cord to a pail of water and...Ch. 5 - A bowling ball weighing 71.2 N (16.0 lb) is...Ch. 5 - BIO Effect on Blood of Walking. While a person is...Ch. 5 - An adventurous archaeologist crosses between two...Ch. 5 - Two ropes are connected to a steel cable that...Ch. 5 - In Fig. P5.62 a worker lifts a weight w by pulling...Ch. 5 - In a repair shop a truck engine that has mass 409...Ch. 5 - A horizontal wire holds a solid uniform ball of...Ch. 5 - A solid uniform 45.0-kg ball of diameter 32.0 cm...Ch. 5 - CP A box is sliding with a constant speed of 4.00...Ch. 5 - CP BIO Forces During Chin-ups. When you do a...Ch. 5 - CP CALC A 2.00-kg box is suspended from the end of...Ch. 5 - CALC A 3.00-kg box that is several hundred meters...Ch. 5 - CP A 5.00-kg box sits at rest at the bottom of a...Ch. 5 - Two boxes connected by a light horizontal rope are...Ch. 5 - A 6.00-kg box sits on a ramp that is inclined at...Ch. 5 - CP An 8.00-kg box sits on a ramp that is inclined...Ch. 5 - CP In Fig. P5.74, m1 = 20.0 kg and = 53.1. The...Ch. 5 - CP You place a book of mass 5.00 kg against a...Ch. 5 - Block A in Fig. P5.76 weighs 60.0 N. The...Ch. 5 - A block with mass m1 is placed on an inclined...Ch. 5 - BIO The Flying Leap of a Flea. High-speed motion...Ch. 5 - Block A in Fig. P5.79 weighs 1.20 N, and block B...Ch. 5 - CP Elevator Design. You are designing an elevator...Ch. 5 - CP CALC You are standing on a bathroom scale in an...Ch. 5 - A hammer is hanging by a light rope from the...Ch. 5 - A 40.0-kg packing case is initially at rest on the...Ch. 5 - If the coefficient of static friction between a...Ch. 5 - Two identical 15.0-kg balls, each 25.0 cm in...Ch. 5 - CP Traffic Court. You are called as an expert...Ch. 5 - Block A in Fig. P5.87 weighs 1.90 N, and block B...Ch. 5 - CP Losing Cargo. A 12.0-kg box rests on the level...Ch. 5 - Block A in Fig. P5.89 has mass 4.00 kg, and block...Ch. 5 - Two blocks connected by a cord passing over a...Ch. 5 - In terms of m1, m2, and g, find the acceleration...Ch. 5 - Block B, with mass 5.00 kg, rests on block A, with...Ch. 5 - Two objects, with masses 5.00 kg and 2.00 kg, hang...Ch. 5 - Friction in an Elevator. You are riding in an...Ch. 5 - A block is placed against the vertical front of a...Ch. 5 - Two blocks, with masses 4.00 kg and 8.00 kg, are...Ch. 5 - Block A, with weight 3w, slides down an inclined...Ch. 5 - Jack sits in the chair of a Ferris wheel that is...Ch. 5 - Bunked Curve I. A curve with a 120-m radius on a...Ch. 5 - Banked Curve II. Consider a wet roadway banked as...Ch. 5 - Blocks A, B, and C are placed as in Fig. P5.101...Ch. 5 - You are riding in a school bus. As the bus rounds...Ch. 5 - CALC You throw a rock downward into water with a...Ch. 5 - A 4.00-kg block is attached to a vertical rod by...Ch. 5 - On the ride Spindletop at the amusement park Six...Ch. 5 - A 70-kg person rides in a 30-kg cart moving at 12...Ch. 5 - A small bead can slide without friction on a...Ch. 5 - A physics major is working to pay her college...Ch. 5 - DATA In your physics lab, a block of mass m is at...Ch. 5 - DATA A road heading due cast passes over a small...Ch. 5 - DATA You are an engineer working for a...Ch. 5 - Moving Wedge. A wedge with mass M rests on a...Ch. 5 - Figure P5.112 5.113A wedge with mass M rests on a...Ch. 5 - Double Atwoods Machine. In Fig. P5.114 masses m1...Ch. 5 - A ball is held at rest at position A in Fig....Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
How the girl will move the wagon as the wagon applies an equal and opposite force on the wagon.
College Physics: A Strategic Approach (3rd Edition)
Estimate the average temperature of the air inside a hot-air balloon (see Figure 1.1). Assume that the total ma...
An Introduction to Thermal Physics
Compare the brightness of the two bulb with each other. (Pay attention to large differences in brightness. You ...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A flat (unbanked) curve on a highway has a radius of 182.5 m. A car rounds the curve at a speed of 35.0 m/s. a. What is the minimum coefficient of static friction that will prevent sliding? b. Suppose that the highway is icy and the coefficient of static friction between the tires and pavement is only one-third of what you found in part (a). What should be the maximum speed of the car so that it can round the curve safely?arrow_forwardSpeed Racer can go around a flat curve at a maximum speed of 35.0m/s. If the coefficient of static friction between the road and the tires of the MACH 5 is 0.415, what is the radius of the curve in meters?arrow_forwardA car rounds a level (unbanked) curve with a radius of 95 m without skidding at a speed of 25 m/s. What is the smallest possible coefficient of friction between the tires and the ground? Is the friction static or kinetic? Include a force (or free body) diagram of the situation.arrow_forward
- A roadway for stunt drivers is designed for racecars moving at a speed of 40 m/s. A curved section of the roadway is a circular arc of 230 m radius. The roadway is banked so that a vehicle can go around the curve with the friction force from the road equal to zero. At what angle is the roadway banked?arrow_forward0 ssfeer SS 9. A car goes around a curve on a road that is banked at an angle of 31.0°. Even though the road is slick, the car will stay on the road without any friction between its tires and the road when its speed is 27.0 m/s. What is the radius of the curve? m ssf60 f60 xf60 ssis? XO ssf60the ssf60 ssfearrow_forwardA case of fine glassware is loaded into a truck and sits on the floor. The truck drives along a street that follows along a circle that has a radius of 30.5 meters. The street is not banked. The coefficient of static friction between case of glass and the floor of the truck is 0.570. If the truck drives too fast, the case of glassware will slip and the glass will be damaged. How fast can the truck be moving without the box sliding?arrow_forward
- cht3 t 9. A ride at an amusement park consists of a rotating cylinder with a radius of 5.00 m. After it reaches a certain speed, the floor drops away, and riders are held to the walls via the force of static friction. The coefficient of static friction between a rider and the wall is 0.400. What is the minimum speed needed to ensure that the rider will not slide down the wall?arrow_forwardDo it correctly!arrow_forwardA car is safely negotiating an unbanked circular turn at a speed of 26 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one third of its dry-road value. If the car is to continue safely around the curve, to what speed must the driver slow the car?arrow_forward
- A race track curve has a radius of 90 m and is banked at an angle of 15°. the coefficient of static friction between the tires and the roadway is 0.4. a race car with a mass of 1200 kg rounds the curve with a maximum speed to avoid skidding. What’s the normal force on the car as it rounds the curve (exerted by road), the radial acceleration, and speed?arrow_forwardA curve in a stretch of highway has radius 512 m. The road is unbanked. The coefficient of static friction between the tires and road is 0.600. a. What is the maximum safe speed that a car can travel around the curve without skidding? answer in m/s b. Which of the following is the correct free-body diagram of the car when it enters the curve at a speed greater than the maximum safe speed? (OPTIONS ATTACHED) c. When the car enters the curve at a speed greater than the maximum safe speed (speed at which the car won’t skid), which of the following statements are correct? The static frictional force is not large enough to keep the car in a circular path. The car skids toward the outside of the curve. The car skids toward the inside of the curve. The static frictional force is large enough to keep the car in a circular path.arrow_forwardA car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one- sixth of its dry-road value. If the car is to continue safely around the curve, to what speed must the driver slow the car? m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY