University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.19E
CP A 750.0-kg boulder is raised from a quarry 125 m deep by a long uniform chain having a mass of 575 kg. This chain is of uniform strength, but at any point it can support a maximum tension no greater than 2.50 times its weight without breaking. (a) What is the maximum acceleration the boulder can have and still get out of the quarry, and (b) how long does it take to he lifted out at maximum acceleration if it started from rest?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An 800 kg boulder is raised from a quarry 183 m deep by a long, uniform chain having a mass
of 560 kg. This chain is of uniform strength, but at any point it can support a maximum tension
no greater than 2.50 times its weight without breaking.
What is the maximum acceleration the boulder can have and still get out of the quarry?
Two masses are connected by a rigid link as shown in Fig. Q3. The masses are resting on
an inclined plane. The masses are then released. Considering the coefficient of kinetic
friction between the inclined plane and the masses A and B are 0.1 and 0.2 respectively.
3.
Compute by using Newton's second law
a) The acceleration of both masses.
b) The force in the rigid link and specify whether it is in tension or compression.
8kg
В
4kg
25°
Fig. Q3
A 3.00 kg box that is several hundred meters above theearth’s surface is suspended from the end of a short vertical rope of negligiblemass. A time-dependent upward force is applied to the upper endof the rope and results in a tension in the rope of T1t2 = (36.0 N/s)t.The box is at rest at t = 0. The only forces on the box are the tension inthe rope and gravity. What is the maximum distance that the box descends below its initial position?
Chapter 5 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 5.1 - A traffic light of weight w hangs from two...Ch. 5.2 - Suppose you hold the glider in Example 5.12 so...Ch. 5.3 - Consider a box that is placed on different...Ch. 5.4 - Satellites are held in orbit by the force of our...Ch. 5 - A man sits in a seat that is hanging from a rope....Ch. 5 - In general, the normal force is not equal to the...Ch. 5 - A clothesline hangs between two poles. No matter...Ch. 5 - You drive a car up a steep hill at constant speed....Ch. 5 - For medical reasons, astronauts in outer space...Ch. 5 - To push a box up a ramp, which requires less...
Ch. 5 - A woman in an elevator lets go of her briefcase,...Ch. 5 - A block rests on an inclined plane with enough...Ch. 5 - A crate slides up an inclined ramp and then slides...Ch. 5 - A crate of books rests on a level floor. To move...Ch. 5 - In a world without friction, which of the...Ch. 5 - When you stand with bare feet in a wet bathtub,...Ch. 5 - You are pushing a large crate from the back of a...Ch. 5 - It is often said that friction always opposes...Ch. 5 - If there is a net force on a particle in uniform...Ch. 5 - A curve in a road has a bank angle calculated and...Ch. 5 - You swing a ball on the end of a lightweight...Ch. 5 - The centrifugal force is not included in the...Ch. 5 - A professor swings a rubber stopper in a...Ch. 5 - To keep the forces on the riders within allowable...Ch. 5 - A tennis ball drops from rest at the top of a tall...Ch. 5 - You throw a baseball straight upward with speed 0....Ch. 5 - You throw a baseball straight upward. If you do...Ch. 5 - You have two identical tennis balls and fill one...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - When a balled baseball moves with air drag, when...Ch. 5 - A ball is thrown from the edge of a high cliff....Ch. 5 - Two 25.0-N weights are suspended at opposite ends...Ch. 5 - In Fig. E5.2 each of the suspended blocks has...Ch. 5 - A 75.0-kg wrecking ball hangs from a uniform,...Ch. 5 - BIO Injuries to the Spinal Column. In the...Ch. 5 - A picture frame hung against a wall is suspended...Ch. 5 - A large wrecking ball is held in place by two...Ch. 5 - Find the tension in each cord in Fig. E5.7 if the...Ch. 5 - A 1130-kg car is held in place by a light cable on...Ch. 5 - A man pushes on a piano with mass 180 kg; it...Ch. 5 - In Fig. E5.10 the weight w is 60.0 N. (a) What is...Ch. 5 - BIO Stay Awake! An astronaut is inside a 2.25 106...Ch. 5 - A rocket of initial mass 125 kg (including all the...Ch. 5 - CP Genesis Crash. On September 8, 2004, the...Ch. 5 - Three sleds are being pulled horizontally on...Ch. 5 - Atwoods Machine. A 15.0-kg load of bricks hangs...Ch. 5 - CP An 8.00-Kg block of ice, released from rest at...Ch. 5 - A light rope is attached to a block with mass 4.00...Ch. 5 - CP Runway Design. A transport plane lakes off from...Ch. 5 - CP A 750.0-kg boulder is raised from a quarry 125...Ch. 5 - Apparent Weight. A 550-N physics student stands on...Ch. 5 - CP BIO Force During a Jump. When jumping straight...Ch. 5 - CP CALC A 2540-kg test rocket is launched...Ch. 5 - CP CALC A 2.00-kg box is moving to the right with...Ch. 5 - CP CALC A 5.00-kg crate is suspended from the end...Ch. 5 - BIO The Trendelenburg Position. After emergencies...Ch. 5 - In a laboratory experiment on friction, a 135-N...Ch. 5 - CP A stockroom worker pushes a box with mass 16.8...Ch. 5 - A box of bananas weighing 40.0 N rests on a...Ch. 5 - A 45.0-kg crate of tools rests on a horizontal...Ch. 5 - Some sliding rocks approach the base of a hill...Ch. 5 - A box with mass 10.0 kg moves on a ramp that is...Ch. 5 - A pickup truck is carrying a toolbox, but the rear...Ch. 5 - You are lowering two boxes, one on top of the...Ch. 5 - Consider the system shown in Fig. E5.34. Block A...Ch. 5 - CP Stopping Distance. (a) If the coefficient of...Ch. 5 - CP A 25.0-kg box of textbooks rests on a loading...Ch. 5 - Two crates connected by a rope lie on a horizontal...Ch. 5 - A box with mass m is dragged across a level floor...Ch. 5 - CP As shown in Fig. E5.34, block A (mass 2.25 kg)...Ch. 5 - You throw a baseball straight upward. The drag...Ch. 5 - A large crate with mass m rests on a horizontal...Ch. 5 - (a) In Example 5.18 (Section 5.3), what value of D...Ch. 5 - A stone with mass 0.80 kg is attached to one end...Ch. 5 - BIO Force on a Skaters Wrist. A 52-kg ice skater...Ch. 5 - A small remote-controlled car with mass 1.60 kg...Ch. 5 - 5.46A small car with mass 0.800 kg travels at...Ch. 5 - A small model car with mass m travels at constant...Ch. 5 - A flat (unbanked) curve on a highway has a radius...Ch. 5 - A 1125-kg car and a 2250-kg pickup truck approach...Ch. 5 - The Giant Swing at a county fair consists of a...Ch. 5 - In another version of the Giant Swing (see...Ch. 5 - A small button placed on a horizontal rotating...Ch. 5 - Rotating Space Stations. One problem for humans...Ch. 5 - The Cosmo Clock 21 Ferris wheel in Yokohama,...Ch. 5 - An airplane flies in a loop (a circular path in a...Ch. 5 - A 50.0-kg stunt pilot who has been diving her...Ch. 5 - Stay Dry! You tie a cord to a pail of water and...Ch. 5 - A bowling ball weighing 71.2 N (16.0 lb) is...Ch. 5 - BIO Effect on Blood of Walking. While a person is...Ch. 5 - An adventurous archaeologist crosses between two...Ch. 5 - Two ropes are connected to a steel cable that...Ch. 5 - In Fig. P5.62 a worker lifts a weight w by pulling...Ch. 5 - In a repair shop a truck engine that has mass 409...Ch. 5 - A horizontal wire holds a solid uniform ball of...Ch. 5 - A solid uniform 45.0-kg ball of diameter 32.0 cm...Ch. 5 - CP A box is sliding with a constant speed of 4.00...Ch. 5 - CP BIO Forces During Chin-ups. When you do a...Ch. 5 - CP CALC A 2.00-kg box is suspended from the end of...Ch. 5 - CALC A 3.00-kg box that is several hundred meters...Ch. 5 - CP A 5.00-kg box sits at rest at the bottom of a...Ch. 5 - Two boxes connected by a light horizontal rope are...Ch. 5 - A 6.00-kg box sits on a ramp that is inclined at...Ch. 5 - CP An 8.00-kg box sits on a ramp that is inclined...Ch. 5 - CP In Fig. P5.74, m1 = 20.0 kg and = 53.1. The...Ch. 5 - CP You place a book of mass 5.00 kg against a...Ch. 5 - Block A in Fig. P5.76 weighs 60.0 N. The...Ch. 5 - A block with mass m1 is placed on an inclined...Ch. 5 - BIO The Flying Leap of a Flea. High-speed motion...Ch. 5 - Block A in Fig. P5.79 weighs 1.20 N, and block B...Ch. 5 - CP Elevator Design. You are designing an elevator...Ch. 5 - CP CALC You are standing on a bathroom scale in an...Ch. 5 - A hammer is hanging by a light rope from the...Ch. 5 - A 40.0-kg packing case is initially at rest on the...Ch. 5 - If the coefficient of static friction between a...Ch. 5 - Two identical 15.0-kg balls, each 25.0 cm in...Ch. 5 - CP Traffic Court. You are called as an expert...Ch. 5 - Block A in Fig. P5.87 weighs 1.90 N, and block B...Ch. 5 - CP Losing Cargo. A 12.0-kg box rests on the level...Ch. 5 - Block A in Fig. P5.89 has mass 4.00 kg, and block...Ch. 5 - Two blocks connected by a cord passing over a...Ch. 5 - In terms of m1, m2, and g, find the acceleration...Ch. 5 - Block B, with mass 5.00 kg, rests on block A, with...Ch. 5 - Two objects, with masses 5.00 kg and 2.00 kg, hang...Ch. 5 - Friction in an Elevator. You are riding in an...Ch. 5 - A block is placed against the vertical front of a...Ch. 5 - Two blocks, with masses 4.00 kg and 8.00 kg, are...Ch. 5 - Block A, with weight 3w, slides down an inclined...Ch. 5 - Jack sits in the chair of a Ferris wheel that is...Ch. 5 - Bunked Curve I. A curve with a 120-m radius on a...Ch. 5 - Banked Curve II. Consider a wet roadway banked as...Ch. 5 - Blocks A, B, and C are placed as in Fig. P5.101...Ch. 5 - You are riding in a school bus. As the bus rounds...Ch. 5 - CALC You throw a rock downward into water with a...Ch. 5 - A 4.00-kg block is attached to a vertical rod by...Ch. 5 - On the ride Spindletop at the amusement park Six...Ch. 5 - A 70-kg person rides in a 30-kg cart moving at 12...Ch. 5 - A small bead can slide without friction on a...Ch. 5 - A physics major is working to pay her college...Ch. 5 - DATA In your physics lab, a block of mass m is at...Ch. 5 - DATA A road heading due cast passes over a small...Ch. 5 - DATA You are an engineer working for a...Ch. 5 - Moving Wedge. A wedge with mass M rests on a...Ch. 5 - Figure P5.112 5.113A wedge with mass M rests on a...Ch. 5 - Double Atwoods Machine. In Fig. P5.114 masses m1...Ch. 5 - A ball is held at rest at position A in Fig....Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
24. 24 yd2 = ____________ft2
Applied Physics (11th Edition)
(a) Show that .
[Hint: Use integration by parts.]
(b) Let be the step function: . (1.95)
Show that .
Introduction to Electrodynamics
The factor of 10-12 in the range of intensities to which the ear can respond, from threshold to that causing da...
University Physics Volume 1
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
A red blood cell has no nucleus and is therefore unable to make the proteins necessary to maintain itself. Beca...
Conceptual Integrated Science
25. (II) One 3.2-kg paint bucket is hanging by a massless cord from another 3.2-kg paint bucket, also hanging b...
Physics: Principles with Applications
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardA black widow spider hangs motionless from a web that extends vertically from the ceiling above. If the spider has a mass of 1.5 g, what is the tension in the web?arrow_forwardA 10.8-kg block is suspended from the ceiling of an elevator by a cord rated to withstand a tension of 150 N. Shortly after the elevator starts to ascend, the cord breaks. What was the minimum acceleration of the elevator when the cord broke?arrow_forward
- A 3.00 kg box that is several hundred meters above theearth’s surface is suspended from the end of a short vertical rope of negligiblemass. A time-dependent upward force is applied to the upper endof the rope and results in a tension in the rope of T1t2 = (36.0 N/s)t.The box is at rest at t = 0. The only forces on the box are the tension inthe rope and gravity. What is the velocity of the box at (i) t = 1.00 s and (ii) t = 3.00 s?arrow_forward42. A block initially at rest slides down a ramp of length L that makes an angle of θ with the horizontal. (a) Derive an equation that predicts the time required for the block to reach the bottom of the ramp in terms of L, θ, g, and μ, the coefficient of friction. (b) This derived equation has no real solutions for angles θ ≤ tan–1 (μ). Show algebraically this is the case and explain the physical significance of this – i.e. what does this mean about an actual block on an actual ramp with actual friction?arrow_forwardAn elevator and its load have a combined mass of 800 kg The elevator is initially moving downward at 10.0 m>s; it slows to a stop with constant acceleration in a distance of 25.0 m. What is the tension T in the supporting cable while the elevator is being brought to rest?arrow_forward
- Suppose a friend asks to examine the 10.0-kg box you were given previously, hoping to guess what is inside; and you respond, “Sure, pull the box over to you.” She then pulls the box by the attached cord along the smooth surface of the table. The magnitude of the force exerted by the person is FP = 40.0 N, and it is exerted at a 30.0° angle. Calculate:(a) the acceleration of the box, and(b) the magnitude of the upward force FN exerted by the table on the box. Assume that friction can be neglected.arrow_forwardA 2 kg box is against a vertical wall by a small force (f1=10n) perpendicular to the surface of the wall, and pushed upward by a force. Force applied to the box vertically. The force pushes the box and the wall. Determine the value of the applied force to keep the box moving upward at a constant velocityarrow_forwardA box with mass m sits at the bottom of a long ramp thatis sloped upward at an angle a above the horizontal. You give the boxa quick shove, and after it leaves your hands it is moving up the rampwith an initial speed v0. The box travels a distance d up the ramp andthen slides back down. When it returns to its starting point, the speedof the box is half the speed it started with; it has speed v0 /2. What isthe coefficient of kinetic friction between the box and the ramp? (Youranswer should depend on only a.)arrow_forward
- A box rests on top of a flat bed truck. The box has a mass of m = 20 kg. The coefficient of static friction between the box and truck is u, = 0.81 and the coefficient of kinetic friction between the box and truck is Hk = 0.62. 1) The truck accelerates from rest to v; = 16 m/s in t = 12 s (which is slow enough that the box will not slide). What is the acceleration of the box? m/s Submit You currently have O submissions for this question. Only 5 submission are allowed. You can make 5 more submissions for this question. 2) In the previous situation, what is the frictional force the truck exerts on the box? N Submit You currently have 0 submissions for this question. Only 5 submission are allowed. You can make 5 more submissions for this question. 3) What is the maximum acceleration the truck can have before the box begins to slide? m/s Submit You currently have O submissions for this question. Only 5 submission are allowed. You can make 5 more submissions for this question. 4) Now the…arrow_forwardA 68 kg lady stands on a bathroom scale on elevator. Starting from rest, the elevator accelerates upward, getting its maximu speed of 1.18 m/s in 0.900s. It travels with constant speed for the next 4.00s. Then, the elevator undergoes uniform acceleration in negative y direction for 2 s and comes to rest. What does the bathroom scale register 1) before the elevator starts to go up, 2) during the first 0.900s, 3) while it is traveling at constant speed, 4.) during the time its slowing down?arrow_forwardYou are designing a high-speed elevator for a new skyscraper. The elevator will have a mass limit of 2400 kg (including passangers). For passenger comfort, you choose the maximum ascent speed to be 18.0 m/s, the maximum descent speed to be 10.0 m/s, and the maximum acceleration magnitude to be 3.20 m/s^2. Ignore friction. What is the maximum upward force that the supporting cables exert on the elevator car? What is the minimum upward force that the supporting cables exert on the elevator car? What is the minimum time it will take the elevator to ascend from the lobby to the observation deck, a vertical displacement of 640 m? What is the maximum value of a 60.0 kg passanger's apparent weight during the ascent? What is the minimum value of 60.0 kg passenger's apparent weight during the ascent? What is the minimum time it will take the elevator to descend to the lobby from the observation deck, a vertical displacement of 640 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY