University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.115CP
A ball is held at rest at position A in Fig. P5.115 by two light strings. The horizontal string is cut, and the ball starts swinging as a pendulum. Position B is the farthest to the right that the ball can go as it swings back and forth. What is the ratio of the tension in the supporting string at B to its value at A before the string was cut?
Figure P5.115
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5.7 . Find the tension in
TA
m
each cord in Fig. E5.7 if the
weight of the suspended object is w.
Figure E5.7
(a)
(Б)
30° 45°
45°
60°
B.
A 10.00 kg hockey puck on the end of a 2.50 m string is being swung in a circle on a frictionless floor and is traveling at a constant speed of 5.00 m/s. At how many g’s is it being accelerated by the string to keep it going in a circle? What is the tension in the string in N?
18. A bag of cement of weight 325 N hangs from three wires as
suggested in Figure P5.18. Two of the wires make angles
O = 60.0° and 62 = 25.0° with the horizontal. If the sys-
tem is in equilibrium, find the tensions T1, T2, and T3 in
%3D
the wires.
0,
T2
T3
Figure P5.18 Problems 18 and 19.
CEMENT
Chapter 5 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 5.1 - A traffic light of weight w hangs from two...Ch. 5.2 - Suppose you hold the glider in Example 5.12 so...Ch. 5.3 - Consider a box that is placed on different...Ch. 5.4 - Satellites are held in orbit by the force of our...Ch. 5 - A man sits in a seat that is hanging from a rope....Ch. 5 - In general, the normal force is not equal to the...Ch. 5 - A clothesline hangs between two poles. No matter...Ch. 5 - You drive a car up a steep hill at constant speed....Ch. 5 - For medical reasons, astronauts in outer space...Ch. 5 - To push a box up a ramp, which requires less...
Ch. 5 - A woman in an elevator lets go of her briefcase,...Ch. 5 - A block rests on an inclined plane with enough...Ch. 5 - A crate slides up an inclined ramp and then slides...Ch. 5 - A crate of books rests on a level floor. To move...Ch. 5 - In a world without friction, which of the...Ch. 5 - When you stand with bare feet in a wet bathtub,...Ch. 5 - You are pushing a large crate from the back of a...Ch. 5 - It is often said that friction always opposes...Ch. 5 - If there is a net force on a particle in uniform...Ch. 5 - A curve in a road has a bank angle calculated and...Ch. 5 - You swing a ball on the end of a lightweight...Ch. 5 - The centrifugal force is not included in the...Ch. 5 - A professor swings a rubber stopper in a...Ch. 5 - To keep the forces on the riders within allowable...Ch. 5 - A tennis ball drops from rest at the top of a tall...Ch. 5 - You throw a baseball straight upward with speed 0....Ch. 5 - You throw a baseball straight upward. If you do...Ch. 5 - You have two identical tennis balls and fill one...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - When a balled baseball moves with air drag, when...Ch. 5 - A ball is thrown from the edge of a high cliff....Ch. 5 - Two 25.0-N weights are suspended at opposite ends...Ch. 5 - In Fig. E5.2 each of the suspended blocks has...Ch. 5 - A 75.0-kg wrecking ball hangs from a uniform,...Ch. 5 - BIO Injuries to the Spinal Column. In the...Ch. 5 - A picture frame hung against a wall is suspended...Ch. 5 - A large wrecking ball is held in place by two...Ch. 5 - Find the tension in each cord in Fig. E5.7 if the...Ch. 5 - A 1130-kg car is held in place by a light cable on...Ch. 5 - A man pushes on a piano with mass 180 kg; it...Ch. 5 - In Fig. E5.10 the weight w is 60.0 N. (a) What is...Ch. 5 - BIO Stay Awake! An astronaut is inside a 2.25 106...Ch. 5 - A rocket of initial mass 125 kg (including all the...Ch. 5 - CP Genesis Crash. On September 8, 2004, the...Ch. 5 - Three sleds are being pulled horizontally on...Ch. 5 - Atwoods Machine. A 15.0-kg load of bricks hangs...Ch. 5 - CP An 8.00-Kg block of ice, released from rest at...Ch. 5 - A light rope is attached to a block with mass 4.00...Ch. 5 - CP Runway Design. A transport plane lakes off from...Ch. 5 - CP A 750.0-kg boulder is raised from a quarry 125...Ch. 5 - Apparent Weight. A 550-N physics student stands on...Ch. 5 - CP BIO Force During a Jump. When jumping straight...Ch. 5 - CP CALC A 2540-kg test rocket is launched...Ch. 5 - CP CALC A 2.00-kg box is moving to the right with...Ch. 5 - CP CALC A 5.00-kg crate is suspended from the end...Ch. 5 - BIO The Trendelenburg Position. After emergencies...Ch. 5 - In a laboratory experiment on friction, a 135-N...Ch. 5 - CP A stockroom worker pushes a box with mass 16.8...Ch. 5 - A box of bananas weighing 40.0 N rests on a...Ch. 5 - A 45.0-kg crate of tools rests on a horizontal...Ch. 5 - Some sliding rocks approach the base of a hill...Ch. 5 - A box with mass 10.0 kg moves on a ramp that is...Ch. 5 - A pickup truck is carrying a toolbox, but the rear...Ch. 5 - You are lowering two boxes, one on top of the...Ch. 5 - Consider the system shown in Fig. E5.34. Block A...Ch. 5 - CP Stopping Distance. (a) If the coefficient of...Ch. 5 - CP A 25.0-kg box of textbooks rests on a loading...Ch. 5 - Two crates connected by a rope lie on a horizontal...Ch. 5 - A box with mass m is dragged across a level floor...Ch. 5 - CP As shown in Fig. E5.34, block A (mass 2.25 kg)...Ch. 5 - You throw a baseball straight upward. The drag...Ch. 5 - A large crate with mass m rests on a horizontal...Ch. 5 - (a) In Example 5.18 (Section 5.3), what value of D...Ch. 5 - A stone with mass 0.80 kg is attached to one end...Ch. 5 - BIO Force on a Skaters Wrist. A 52-kg ice skater...Ch. 5 - A small remote-controlled car with mass 1.60 kg...Ch. 5 - 5.46A small car with mass 0.800 kg travels at...Ch. 5 - A small model car with mass m travels at constant...Ch. 5 - A flat (unbanked) curve on a highway has a radius...Ch. 5 - A 1125-kg car and a 2250-kg pickup truck approach...Ch. 5 - The Giant Swing at a county fair consists of a...Ch. 5 - In another version of the Giant Swing (see...Ch. 5 - A small button placed on a horizontal rotating...Ch. 5 - Rotating Space Stations. One problem for humans...Ch. 5 - The Cosmo Clock 21 Ferris wheel in Yokohama,...Ch. 5 - An airplane flies in a loop (a circular path in a...Ch. 5 - A 50.0-kg stunt pilot who has been diving her...Ch. 5 - Stay Dry! You tie a cord to a pail of water and...Ch. 5 - A bowling ball weighing 71.2 N (16.0 lb) is...Ch. 5 - BIO Effect on Blood of Walking. While a person is...Ch. 5 - An adventurous archaeologist crosses between two...Ch. 5 - Two ropes are connected to a steel cable that...Ch. 5 - In Fig. P5.62 a worker lifts a weight w by pulling...Ch. 5 - In a repair shop a truck engine that has mass 409...Ch. 5 - A horizontal wire holds a solid uniform ball of...Ch. 5 - A solid uniform 45.0-kg ball of diameter 32.0 cm...Ch. 5 - CP A box is sliding with a constant speed of 4.00...Ch. 5 - CP BIO Forces During Chin-ups. When you do a...Ch. 5 - CP CALC A 2.00-kg box is suspended from the end of...Ch. 5 - CALC A 3.00-kg box that is several hundred meters...Ch. 5 - CP A 5.00-kg box sits at rest at the bottom of a...Ch. 5 - Two boxes connected by a light horizontal rope are...Ch. 5 - A 6.00-kg box sits on a ramp that is inclined at...Ch. 5 - CP An 8.00-kg box sits on a ramp that is inclined...Ch. 5 - CP In Fig. P5.74, m1 = 20.0 kg and = 53.1. The...Ch. 5 - CP You place a book of mass 5.00 kg against a...Ch. 5 - Block A in Fig. P5.76 weighs 60.0 N. The...Ch. 5 - A block with mass m1 is placed on an inclined...Ch. 5 - BIO The Flying Leap of a Flea. High-speed motion...Ch. 5 - Block A in Fig. P5.79 weighs 1.20 N, and block B...Ch. 5 - CP Elevator Design. You are designing an elevator...Ch. 5 - CP CALC You are standing on a bathroom scale in an...Ch. 5 - A hammer is hanging by a light rope from the...Ch. 5 - A 40.0-kg packing case is initially at rest on the...Ch. 5 - If the coefficient of static friction between a...Ch. 5 - Two identical 15.0-kg balls, each 25.0 cm in...Ch. 5 - CP Traffic Court. You are called as an expert...Ch. 5 - Block A in Fig. P5.87 weighs 1.90 N, and block B...Ch. 5 - CP Losing Cargo. A 12.0-kg box rests on the level...Ch. 5 - Block A in Fig. P5.89 has mass 4.00 kg, and block...Ch. 5 - Two blocks connected by a cord passing over a...Ch. 5 - In terms of m1, m2, and g, find the acceleration...Ch. 5 - Block B, with mass 5.00 kg, rests on block A, with...Ch. 5 - Two objects, with masses 5.00 kg and 2.00 kg, hang...Ch. 5 - Friction in an Elevator. You are riding in an...Ch. 5 - A block is placed against the vertical front of a...Ch. 5 - Two blocks, with masses 4.00 kg and 8.00 kg, are...Ch. 5 - Block A, with weight 3w, slides down an inclined...Ch. 5 - Jack sits in the chair of a Ferris wheel that is...Ch. 5 - Bunked Curve I. A curve with a 120-m radius on a...Ch. 5 - Banked Curve II. Consider a wet roadway banked as...Ch. 5 - Blocks A, B, and C are placed as in Fig. P5.101...Ch. 5 - You are riding in a school bus. As the bus rounds...Ch. 5 - CALC You throw a rock downward into water with a...Ch. 5 - A 4.00-kg block is attached to a vertical rod by...Ch. 5 - On the ride Spindletop at the amusement park Six...Ch. 5 - A 70-kg person rides in a 30-kg cart moving at 12...Ch. 5 - A small bead can slide without friction on a...Ch. 5 - A physics major is working to pay her college...Ch. 5 - DATA In your physics lab, a block of mass m is at...Ch. 5 - DATA A road heading due cast passes over a small...Ch. 5 - DATA You are an engineer working for a...Ch. 5 - Moving Wedge. A wedge with mass M rests on a...Ch. 5 - Figure P5.112 5.113A wedge with mass M rests on a...Ch. 5 - Double Atwoods Machine. In Fig. P5.114 masses m1...Ch. 5 - A ball is held at rest at position A in Fig....Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The CIA wants your help identifying individual terrorists in a photo of a training camp taken from a spy satell...
Essential University Physics: Volume 2 (3rd Edition)
78. Is the decomposition of food by bacteria in our digestive systems aerobic or anaerobic? What evidence suppo...
Conceptual Physical Science (6th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Which TWO forms of light account for the majority of energy coming from the Sun: ultraviolet, visible, or infra...
Lecture- Tutorials for Introductory Astronomy
The diagram shows Bob’s view of the passing of two identical spaceships. Anna’s and his own, where v=2 . The le...
Modern Physics
For each set of measurements, find the measurement that is
the most accurate.
the least accurate.
the most prec...
Applied Physics (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In deep space, an astronaut is whipping a heavy tool around in a circle by a taut cable. The cable is 1 meter long (from the astronaut's fist to the tool), and the tool makes a full trip around the circle in half a second as it moves with constant speed. The mass of the tool is 10 kg. What is the tension in the cable?arrow_forwardTwo masses are connected by a rigid link as shown in Fig. Q3. The masses are resting on an inclined plane. The masses are then released. Considering the coefficient of kinetic friction between the inclined plane and the masses A and B are 0.1 and 0.2 respectively. 3. Compute by using Newton's second law a) The acceleration of both masses. b) The force in the rigid link and specify whether it is in tension or compression. 8kg В 4kg 25° Fig. Q3arrow_forwardMary applies a force of 75 N to push a box with an acceleration of 0.43 m/s?. When she increases the pushing force to 85 N, the box's acceleration changes to 0.68 m/s?. There is a constant friction force present between the floor and the box. (a) What is the mass of the box in kilograms? kg (b) What is the coefficient of kinetic friction between the floor and the box?arrow_forward
- Two blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forwardThe mass of a particle is 15 kg. (a) What is its weight on Earth? (b) What is its weight on the Moon? (c) What is its mass on the Moon? (d) What is its weight in outer space far from any celestial body? (e) What is its mass at this point?arrow_forwardA 0.400-kg pendulum bob passes through the lowest part of its path at a speed of 3.00 m/s. (a) What is the tension in the pendulum cable at this point if the pendulum is 80.0 cm long? (b) When the pendulum reaches its highest point, what angle does the cable make with the vertical? (c) What is the tension in the pendulum cable when the pendulum reaches its highest point?arrow_forward
- A man whirls a 0.20-kg piece of lead attached to the end of a string of length 0.500 m in a circular path and in a vertical plane. If the man maintains a constant speed of 4.00 m/s, what is the tension in the string when the lead is (a) at the top of the circular path? (b) at the bottom of the circular path? (Sec Section 7.4.)arrow_forwardA huge pendulum is made out of a 10.5-m cable attached at the top to a steel beam. The bottom of the cable is attached to a 60.0-kg anvil that swings back and forth. At the very bottom of its swing, the anvil travels at a speed of 1.59 m/s. Find the tension (in N) in the cable. (You may assume that the cable itself has negligible mass.arrow_forwardAn object weights 5000 N on planet Alpha and 800 N on planet Beta. Planet Alpha has 4 times the mass of planet Beta. What is the ratio of Alpha's radius to Beta's radius? A 50 kg object is moving in uniform circular motion with a radius of 25 m. It takes the object 6 s to make one complete revolution. Find the net force acting on the object.arrow_forward
- A block and sphere are connected by a cord that passes over a pulley as shown. Neglect friction and assume the cord is massless. Take m₁ Ө = 49.0°. m₁ m2 0 (b) What is the tension (in N) in the cord? (Enter the magnitude.) 24.52 N (c) What is the speed (in m/s) of each object 1.50 s after being released from rest? 3.675 m/s = 2.00 kg, m2 = 4.95 kg, and S (d) What If? If the incline under m₂ is rough, what is the minimum value of the coefficient of static friction μ for which the system will not move? μs =arrow_forward5.59 Two ropes are connected to a steel cable that supports a hanging weight (Fig. P5.59). (a) Draw a free- body diagram showing all of the forces acting at the knot that connects the two ropes to the steel cable. Based on your diagram, which of the two ropes will have the greater tension? (b) If the maxi- mum tension either rope can sustain Figure P5.59 60° 40° without breaking is 5000 N, determine the maximum value of the hanging weight that these ropes can safely support. Ignore the weight of the ropes and of the steel cable. 5.60 An adventurous archaeologist crosses between two rock cliffs by slowly going hand over hand along a rope stretched between the cliffs. He stops to rest at the middle of the rope (Fig. P5.60). The rope will break if the tension in it exceeds 2.50 × 10* N, and our hero's mass is 90.0 kg. (a) If the angle 0 is 10.0°, what is the tension in the rope? (b) What is the smallest value 0 can have if the rope is not to break?arrow_forwardA 17 kg block rests on a 32 degree inclined frictionless surface and is attached by a light string to a 34 kg hanging mass where the string passes over a massless frictionless pulley. If g = 9.8 m/s2, what is the tension in the connecting string?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY