
Concept explainers
(a)
Interpretation:
Number of moles of
Concept introduction:
Number of moles can be determined using the given equation,
Here, n is the number of moles
M is the Molar mass
m is the Mass
(a)

Answer to Problem 5.90QE
Explanation of Solution
Mass of one mole of water gas is
Number of moles of water gas is determined as follows,
Ratio of
Number of moles of
(b)
Interpretation:
Enthalpy change when
Concept introduction:
According to Hess’s Laws, change in enthalpy in an overall reaction can be calculated from the change in enthalpy of other reactions.
- If an equation is obtained by the addition of more than one thermochemical equations, then the enthalpy change of that equation is the sum of change in enthalpy of all the equations added.
- If an equation is the reverse direction of a thermochemical equation, then the change in enthalpy has same numerical value but opposite sign.
- The enthalpy change depends on the mass of reacting substance. If the coefficients present in an equation is multiplied with a factor, then change in enthalpy also should be multiplied with that same factor.
(b)

Answer to Problem 5.90QE
Enthalpy change when
Explanation of Solution
Mass of one mole of water gas is
Number of moles of water gas is determined as follows,
Given reactions are shown below,
Balanced chemical equation for the burning of water gas in air is shown below,
From the above equations, it is clear equation (3) can be obtained by adding equation (1) divided by 2 and equation (2) divided by 2.
According to Hess’s Law, when the direction of reaction reverses, then the enthalpy change will get opposite sign. Also, when the number of reactants and products are multiplied or divided by a factor, then the enthalpy change must also be multiplied or divided by the same factor.
Enthalpy change for the combustion of 1 mole of water gas is
Enthalpy change when
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry: Principles and Practice
- Synthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forward
- Indicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forward
- Question 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are mixed with sodium ethoxide in ethanol.arrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are reacted with sodium ethoxide in ethanol.arrow_forward
- 2,2-Dimethylpropanal and acetaldehyde are reacted with sodium ethoxide in ethanol. Indicate the products obtained.arrow_forwardAdd conditions above and below the arrow that turn the reactant below into the product below in a single transformationADS fint anditions 百 Abl res condinese NC ง Add on condtions 1.0 B H,N.arrow_forward3. Provide all the steps and reagents for this synthesis. OHarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





