
Concept explainers
(a)
Interpretation:
The amount of pressure created when a gas molecule moving in a closed container has to be explained.
Concept Introduction:
Gas pressure
Pressure or Stress is the force applied perpendicular to the surface of an object per unit area.
SI derived unit of pressure is Pascal (Pa).
(a)

Answer to Problem 5.28QP
The pressure in the closed container developed when the gas molecule has a constant bombardment or collisions with the sides of the containers.
Explanation of Solution
Figure 1
According to kinetic theory of gases the molecules in a container are continuously moving freely. The molecule undergoes collisions within themselves and with the sides of the container which are very small but on an average the collisions are considerable forces on the container. The molecule exerts maximum force at the surface if the angle of incidence is 900.
The summation of all the forces are known as pressure.
The amount of pressure created when a gas molecule moving in a closed container is explained.
(b)
Interpretation:
The amount of pressure created when the gas molecule(s) moving in closed containers A and B has to be explained.
Concept Introduction:
Gas pressure:
Pressure or Stress is the force applied perpendicular to the surface of an object per unit area.
SI derived unit of pressure is Pascal (Pa).
(b)

Answer to Problem 5.28QP
Container B exerts more pressure than the Container A.
Explanation of Solution
Figure 2
The pressure in the closed container developed when the gas molecules has a constant bombardment or collisions with the sides of the containers.
According to
Since container B having more number of molecules than the container A, container B exerts more pressure.
The amount of pressure created when different number of gas molecules in a closed containers is explained.
(c)
Interpretation:
The amount of pressure has to be explained when the containers C and D contains atoms and molecules.
Concept Introduction:
Gas pressure:
Pressure or Stress is the force applied perpendicular to the surface of an object per unit area.
SI derived unit of pressure is Pascal (Pa).
(c)

Answer to Problem 5.28QP
The pressure in container B is four times the pressure in container A. Since Container B contains four times the molecules in container A.
Explanation of Solution
Figure 3
According to Kinetic theory of gases, the more the number of molecules, the more pressure will be in the container. Since container B having four molecules whereas container A has one atom, container B having more pressure than the container A. container is independent of mass but dependent on no of particles.
The amount of pressure was explained when the containers contains atom and molecules.
(d)
Interpretation:
Among the given containers C and D, the container with highest RMS value has to be identified and answer has to be contradicted with the pressure of the container.
Concept Introduction:
Root mean square value:
Where,
(d)

Answer to Problem 5.28QP
Since the atom is lighter than the molecules it will have higher rms speed.
Explanation of Solution
The RMS speed is directly proportional to the square root of
RMS speed doesn’t depends on the pressure of the container, so the pressure of the neither gets support nor contradicts with the RMS value. Because force on the sides of the container doesn’t depend on speed of the particle alone, it does depend on the momentum of the particle
Finally the RMS speed depends on temperature. At constant temperature constant force will be there.
Among the given containers C and D, the container with highest RMS value has been identified and answer has contradicted with the pressure of the container.
(e)
Interpretation:
At the given conditions the pressures among the Containers E and F should be compared.
Concept Introduction:
Gay-Lussac’s law:
Gay-Lussac law derived from the Charles law,
The law states that a sample gas having fixed pressure is directly proportional to the temperature. Since pressure can never be negative and the temperature scale should be absolute minimum.
So the initial and final Pressure will be like
Here,
P1 and P2 are initial and final Pressure.
T1 and T2 are initial and final Temperature.
(e)

Answer to Problem 5.28QP
The pressure in the container F doubles than the pressure in the Container E.
Explanation of Solution
Figure 4
According to Gay lussac law, at equal volumes and equal number of molecules pressure and temperature are directly proportional to each other. So, the containers E and F has equal volumes and equal number of molecules. The temperature in the container F is T = 200 K, and Container E has T = 100 K, according to Gay-Lussac law container F contains double the pressure then the container E.
At the given conditions the pressures among the Containers E and F was compared.
(f)
Interpretation:
At the given conditions the pressures among the Containers G and H should be compared.
Concept Introduction:
Gay-Lussac’s law:
Gay-Lussac law derived from the Charles law,
The law states that a sample gas having fixed pressure is directly proportional to the temperature. Since pressure can never be negative and the temperature scale should be absolute minimum.
So the initial and final Pressure will be like
Here,
P1 and P2 are initial and final Pressure.
T1 and T2 are initial and final Temperature.
(f)

Answer to Problem 5.28QP
The pressure in the container H doubles than the pressure in the Container G.
Explanation of Solution
Figure 5
According to Gay lussac law, at equal volumes and equal number of molecules pressure and temperature are directly proportional to each other. So, the containers H and G has equal volumes and equal number of molecules. The temperature in the container H is T = 200 K, and Container G has T = 100 K, according to Gay-Lussac law container H contains double the pressure then the container G. pressure of the container doesn’t depends on the mass of the particle.
At the given conditions the pressures among the Containers G and H was compared.
(g)
Interpretation:
At the given conditions the pressures among the Containers G and H should be compared.
Concept Introduction:
Gay-Lussac’s law:
Gay-Lussac law derived from the Charles law,
The law states that a sample gas having fixed pressure is directly proportional to the temperature. Since pressure can never be negative and the temperature scale should be absolute minimum.
So the initial and final Pressure will be like
Here,
P1 and P2 are initial and final Pressure.
T1 and T2 are initial and final Temperature.
(g)

Answer to Problem 5.28QP
Both the containers I and J will have same pressures.
Explanation of Solution
Figure 6
According to Gay-Lussac law, pressure of the container relates to Temperature and number of molecules as well. Here the temperature in container I doubles the temperature J which adequately doubles the pressure. But the number of particles in container J is the double the number of particles in container I, which effectively reduces the pressure by one-half. As whole the pressures in the containers remain same.
At the given conditions the pressures among the Containers G and H was compared.
(h)
Interpretation:
At the given conditions the pressures among the Containers K and L should be compared.
Concept Introduction:
Gay-Lussac’s law:
Gay-Lussac law derived from the Charles law,
The law states that a sample gas having fixed pressure is directly proportional to the temperature. Since pressure can never be negative and the temperature scale should be absolute minimum.
So the initial and final Pressure will be like
Here,
P1 and P2 are initial and final Pressure.
T1 and T2 are initial and final Temperature.
(h)

Answer to Problem 5.28QP
The pressure in the container K six times than the pressure in the Container L
Explanation of Solution
Figure 7
Here in this case, container K has six atoms and T = 200 K. whereas container L has 2 molecules and T=100 K. So the Container K has three times than the particles in container L and the temperature doubles than container L. So the container K has six times more pressure than the container L.
At the given conditions the pressures among the Containers K and L was compared.
Want to see more full solutions like this?
Chapter 5 Solutions
General Chemistry - Standalone book (MindTap Course List)
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardGiven a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forward
- TRANSMITTANCE เบบ Please identify the one structure below that is consistent with the 'H NMR and IR spectra shown and draw its complete structure in the box below with the protons alphabetically labeled as shown in the NMR spectrum and label the IR bands, including sp³C-H and sp2C-H stretch, indicated by the arrows. D 4000 OH LOH H₂C CH3 OH H₂C OCH3 CH3 OH 3000 2000 1500 HAVENUMBERI-11 1000 LOCH3 Draw your structure below and label its equivalent protons according to the peak labeling that is used in the NMR spectrum in order to assign the peaks. Integrals indicate number of equivalent protons. Splitting patterns are: s=singlet, d=doublet, m-multiplet 8 3Hb s m 1Hd s 3Hf m 2Hcd 2Had 1He 鄙视 m 7 7 6 5 4 3 22 500 T 1 0arrow_forwardRelative Transmittance 0.995 0.99 0.985 0.98 Please draw the structure that is consistent with all the spectral data below in the box and alphabetically label the equivalent protons in the structure (Ha, Hb, Hc ....) in order to assign all the proton NMR peaks. Label the absorption bands in the IR spectrum indicated by the arrows. INFRARED SPECTRUM 1 0.975 3000 2000 Wavenumber (cm-1) 1000 Structure with assigned H peaks 1 3 180 160 140 120 100 f1 (ppm) 80 60 40 20 0 C-13 NMR note that there are 4 peaks between 120-140ppm Integral values equal the number of equivalent protons 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 fl (ppm)arrow_forwardCalculate the pH of 0.0025 M phenol.arrow_forward
- In the following reaction, the OH- acts as which of these? NO2-(aq) + H2O(l) ⇌ OH-(aq) + HNO2(aq)arrow_forwardUsing spectra attached, can the unknown be predicted? Draw the predicition. Please explain and provide steps. Molecular focrmula:C16H13ClOarrow_forwardCalculate the percent ionization for 0.0025 M phenol. Use the assumption to find [H3O+] first. K = 1.0 x 10-10arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




