
Concept explainers
(a)
Interpretation:
From the given geometric arrangement the number of charge clouds has to be determined.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
(b)
Interpretation:
From the given geometric arrangement the number of charge clouds has to be determined.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
(c)
Interpretation:
From the given geometric arrangement the number of charge clouds has to be determined.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
(d)
Interpretation:
From the given geometric arrangement the number of charge clouds has to be determined.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
(e)
Interpretation:
From the given geometric arrangement the number of charge clouds has to be determined.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.
(f)
Interpretation:
From the given geometric arrangement the number of charge clouds has to be determined.
Concept introduction:
VSEPR model:
- Valance Shell Electron-Pair Repulsion (VSEPR) model is used to predict the shapes of the molecules by the electronic structure of its atoms.
- Electrons that are involved in bonds and in lone pairs of electrons should be thought like occupying “charge clouds” or regions of electron density.
- These region of electron density can repel one another and stay as much as possible and results to assume specific shapes.
Rules to predict the shapes of molecules by VSEPR model:
- Write electron-dot structure of the given molecule.
- Count the number of electron charge clouds surrounding the central atom.
- Determine the geometric arrangement of charge clouds surround the each atom and assume its charge clouds can be oriented in the space as far away from one to another as possible.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
General Chemistry: Atoms First
- Name the below disaccharide. Circle any hemiacetals. Identify the numbering of glycosidic linkage, and identify it as a or ẞ. OH HO HO OH HO HO HO OHarrow_forwardWhat are the monomers used to make the following polymers? F. а. b. с. d. Вецер хочому なarrow_forward1. Propose a reasonable mechanism for the following transformation. I'm looking for curved mechanistic arrows and appropriate formal charges on intermediates. OMe MeO OMe Me2N NMe2 OTBS OH xylenes OMe 'OTBSarrow_forward
- What is the polymer made from the following monomers? What type of polymerization is used for each? а. ОН H2N но b. ن -NH2 d. H₂N NH2 довarrow_forwardCondensation polymers are produced when monomers containing two different functional groups link together with the loss of a small molecule such as H2O. The difunctional monomer H2N(CH2)6COOH forms a condensation polymer. Draw the carbon-skeleton structure of the dimer that forms from this monomer.arrow_forwardWhat is the structure of the monomer?arrow_forward
- → BINDERIYA GANBO... BINDERIYA GANBO. AP Biology Notes Gamino acid chart - G... 36:22 司 10 ☐ Mark for Review Q 1 Hide 80 8 2 =HA O=A¯ = H₂O Acid HIO HBrO HCIO Question 10 of 35 ^ Σ DELL □ 3 % Λ & 6 7 * ∞ 8 do 5 $ 4 # m 3 ° ( 9 Highlights & Notes AXC Sign out Carrow_forwardWhich representation(s) show polymer structures that are likely to result in rigid, hard materials and those that are likely to result in flexible, stretchable, soft materials?arrow_forward3. Enter the molecular weight of the product obtained from the Williamson Ether Synthesis? OH OH & OH excess CH3l Ag₂Oarrow_forward
- Please answer 1, 2 and 3 on the endarrow_forwardIn the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3arrow_forwardOn the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





