Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 40P
An object of mass m1 = 5.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m2 = 9.00 kg as shown in Figure P5.22. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects and (c) the tension in the string.
Figure P5.22
Problems 22 and 29.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Three objects are connected on a table as shown in Figure P5.31. The coefficient ofkinetic friction between the block of mass m2 and the table is 0.350. The objects havemasses of m1 = 4.00 kg, m2 = 1.00 kg, and m3 = 2.00 kg, and the pulleys are frictionless.(a) Draw a free-body diagram of each object. (b) Determine the acceleration of eachobject, including its direction. (c) Determine the tensions in the two cords. What If?(d) If the tabletop were smooth, would the tensions increase, decrease, or remain thesame? Explain.
A block of mass 3.00 kg is pushed up against a wall by a
force P that makes a 50.0° angle with the horizontal as
shown in Figure P5.53. The coefficient of static friction
between the block and the wall is 0.250. Determine the
possible values for the magnitude of P that allow the
block to remain stationary.
50.0°
Figure P5.53
Q24 answer it
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Order of Magnitude Estimate. Mathematical Insight 1.3 defines order of magnitude estimates, and in the text we ...
The Cosmic Perspective (9th Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
Whether two metal foil leaves an electroscope get opposite charge when the electroscope is charged.
The Physics of Everyday Phenomena
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal ...
Physics for Scientists and Engineers
The validity of a scientific law.
Physical Universe
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object of mass M is held in place by an applied force F and a pulley system as shown in Figure P4.43. The pulleys are massless and frictionless. (a) Draw diagrams showing the forces on each pulley. Find (b) the tension in each section of rope, T1, T2, T3, T4, and T5 and (c) the magnitude of F. Figure P4.43 44. Any device that allows you to increase the force you exert is a kind of machine. Some machines, such as the prybar or the inclined plane, are very simple. Some machines do not even look like machines. For example, your car is stuck in the mud and you cant pull hard enough to get it out. You do, however, have a long cable that you connect taut between your front bumper and the trunk of a stout tree. You now pull sideways on the cable at its midpoint, exerting a force f. Each half of the cable is displaced through a small angle from the straight line between the ends of the cable. (a) Deduce an expression for the force acting on the car. (b) Evaluate the cable tension for the case where = 7.00 and f = 100 N.arrow_forwardAn object of mass m1 = 5.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m2 = 9.00 kg as shown in Figure P4.28. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects and (c) the tension in the string. Figure P4.28arrow_forwardTwo blocks connected by a rope of negligible mass are being dragged by a horizontal force (Fig. P5.13). Suppose F = 68.0 N, m1 = 12.0 kg, m2 = 18.0 kg, and the coefficient of kinetic friction between each block and the surface is 0.100. (a) Draw a free-body diagram for each block. Determine (b) the acceleration of the system and (c) the tension T in the rope. Figure P5.13arrow_forward
- Two blocks, each of mass m, are hung from the ceiling of an elevator as in Figure P4.33. The elevator has an upward acceleration a. The strings have negligible mass. (a) Find the tensions T1 and T2 in the upper and lower strings in terms of m, a, and g. (b) Compare the two tensions and determine which string would break first if a is made sufficiently large. (c) What are the tensions if the cable supporting the elevator breaks? Figure P4.33 Problems 33 and 34.arrow_forwardThree objects are connected on a table as shown in Figure P5.14. The coefficient of kinetic friction between the block of mass m2 and the table is 0.350. The objects have masses of m1 = 4.00 kg, m2 = 1.00 kg, and m3 = 2.00 kg, and the pulleys are frictionless. (a) Draw a free-body diagram of each object. (b) Determine the acceleration of each object, including its direction. (c) Determine the tensions in the two cords. What If? (d) If the tabletop were smooth, would the tensions increase, decrease, or remain the same? Explain. Figure P5.14arrow_forwardConsider the three connected objects shown in Figure P5.43. Assume first that the inclined plane is frictionless and that the system is in equilibrium. In terms of m, g, and , find (a) the mass M and (b) the tensions T1 and T2. Now assume that the value of M is double the value found in part (a). Find (c) the acceleration of each object and (d) the tensions T1 and T2. Next, assume that the coefficient of static friction between m and 2m and the inclined plane is s and that the system is in equilibrium. Find (e) the maximum value of M and (f) the minimum value of M. (g) Compare the values of T2 when M has its minimum and maximum values. Figure P5.43arrow_forward
- Two blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forwardTwo objects are connected by a light string that passes over a frictionless pulley as shown in Figure P4.30. Assume the incline is frictionless and take m1 = 2.00 kg, m2 = 6.00 kg, and = 55.0. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects, (c) the tension in the string, and (d) the speed of each object 2.00 s after it is released from rest. Figure P4.30arrow_forwardYou walk into an elevator, step onto a scale, and push the “up” button. You recall that your normal weight is 625 N. Draw a free-body diagram. (a) When the elevator has an upward acceleration of magnitude 2.50 m/s2, what does the scale read? (b) If you hold a 3.85 kg package by a light vertical string, what will be the tension in this string when the elevator accelerates as in part (a)?arrow_forward
- Two blocks connected by a rope of negligible mass are being dragged by a horizontal force (Fig. P5.65). Suppose F = 68.0 N, m1 = 12.0 kg, m2 = 18.0 kg, and the coefficient of kinetic friction between each block and the surface is 0.100. (a) Draw a free-body diagram for each block. Determine (b) the acceleration of the system and (c) the tension T in the rope.arrow_forwardIn a physics lab experiment, a 6.00kg box is pushed across a flat table by a horizontal force. a) If the box is moving at constant speed of 0.350 m/s and the coefficient of kinetic friction is 0.12, what is the magnitude of the force? b) What is the magnitude of the force if the box is speeding up with a constant acceleration of 0.180m/s²?arrow_forwardBoxes A and B are connected to each end of a light vertical rope . A constant upward force F = 80.0 N is applied to box A. Starting from rest, box B descends 12.0 m in 4.00 s. The tension in the rope connecting the two boxes is 36.0 N. What are the masses of (a) box B, (b) box A?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License