Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5OQ
To determine
The puck’s acceleration in outer space.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One way to determine the coefficients of friction (μs and μk) between two surfaces is to use an incline plane. Consider a block of mass m = 2.0kg initially at rest at the top of the ramp. The angle θ is increased slowly. The object starts to slide down the ramp when θ = 40 . Once the block slides down, the angle is kept constant. The block travels along the ramp by distance d = 2.0 m in time t = 1.5 s.
(a) Determine the value of μs(b) Determine the value of μk
A man pushes an object to the right and exerts a force which has a horizontal compotent of F = 33 N. A horizontal frictional force has a magnitude of f = 15 N which opposed the horizontal component of the fushing force. The mass of the object is m = 31 kg.
Write an expression for the magnitude of the acceleration of the object.
If the object starts at rest what is the speed in meters per second at t = 2.00s?
If the man stops pushing the object at t = 2.00s and the firctional force is constant what is the distance in meters does to object slide before coming to a rest?
An SUV drives on a straight-line track. Starting with a speed v0 = 14.4m/s, it comes to rest over a distance d = 28.8m
Part (a) Write an expression for the magnitude of the net force on a passenger with mass m . If m = 61.3kg, then what is
the numeric value, in newtons, for the net force in Part (a)? .
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You have always been impressed by the speed of the elevators in the IDS building in Minneapolis. You wonder about the maximum acceleration for these elevators. You decide to measure it by using your bathroom scale. While the elevator is at rest on the ground floor, you get in, put down your scale, and stand on it. The scale reads 130 lbs. You continue standing on the scale while the elevator goes up, carefully watching the reading. During the trip to the 50th floor, the greatest scale reading was 180 lbs.arrow_forwardA 4.0 kg toy car can move along an x axis. The figure gives Fx of the force acting on the car, which begins at rest at time t = 0. The scale at t = 3.0 s? on the Fx axis is set by Fxs = 5.0 N. In unit-vector notation, what is P at (a)t = 3.0 s and (b)t = 6.0 s,(c) what is Fx (N) F A 6 8 -F -t (s)arrow_forwardA 20 kg crate travels along a smooth slope of y = (1/8)x^3/2 . If at a point its speed is 25 m/sec where x = 18m, determine the normal force exerted by the slope to the crate. Also, what is its acceleration.arrow_forward
- A 4 kg particle moves along an x axis according to x(t) = −1 + 4t − 5t3, with x in metersand t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3 s? assume g= 10m/s^2arrow_forwardA block of mass 8.3 kg is initially at rest on a horizontal plane. The coefficients of kinetic and static friction between the plane and the block are respectivelyμc= 0.25 and μe= 0.36. Consider g = 10 m/s2 A horizontal force of magnitude F = 26.3 N is then applied to the block. In this situation, calculate the magnitude of the friction force (in N, to one decimal place).arrow_forwardA 1,652-kg car starts from rest at the top of a driveway 7.03 m long that is sloped at an angle of 38 degrees with the horizontal. If an average friction force of 3,382 N impedes the motion of the car, find the speed (in m/s) of the car at the bottom of the driveway. Use the approximation that g ≈ 10 m/s2.arrow_forward
- A 5.2 kg toy car can move along an x axis. The figure gives Fx of the force acting on the car, which begins at rest at time t = 0. The scale on the Fx axis is set by Fxs = 3.2 N. In unit-vector notation, what is Pat (a)t = 4.0s and (b)t = 7.0 s.(c) what is at t= 9.0 s? F, (N) (a) Number (b) Number 4 7 (c) Number i 1 8 3.2 3.2 F (+ (+ i 20 i 54.4 i 3.2 k Units k Units k Units kg-m/s or N-s kg-m/s or N-s kg-m/s or N-sarrow_forwardA toy rocket engine is securely fastened to a large puck that can glide with negligible friction over a horizontal surface, taken as the xy plane. The 5.80-kg puck has a velocity of 2.001 m/s at one instant. Eight seconds later, its velocity is (6.001 + 8.0ĵ) m/s. (a) Assuming the rocket engine exerts a constant horizontal force, find the components of the force. Î + (b) Find its magnitude. Narrow_forwardA monkey pushes a box of mass 25 kg in a straight line across a rough floor. The applied force F has magnitude 85 N and acts downward at an angle 0 = 10° with respect to the horizontal, as shown below. The box is initially at rest at the position x/ a). Find the coefficient of friction between the box and the floor. and it has speed v2 = 0.55 m/s at position x2 = 3.50 m. 0 m, b). What is the net work done? c). How much work (magnitude and sign) is done by the friction force? m Hint: this q involves constant acceleration, Newton's laws, workarrow_forward
- A 2 kg golf ball moves along an x axis according to x(t) = 1013 – 2.80t² + 7.4t + 15, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at t=5.20 s?arrow_forwardA 50.0 kg man standing on a spring scale takes a descending elevator ride (DOWNWARD). Starting from the rest, the elevator descends, attaining a maximum speed of 8.0 m/s in 4.0 seconds. Then the elevator travels with this constant speed of 8.0 m/s for 10.0 seconds. Lastly, it takes the elevator 2.0 second to make a complete stop. Based on the information above, answer the questions below: (Hint: Drawing pictures would help you understand the 3 legs of this elevator ride. Since the elevator is descending, going down, it is more convenient to chose downward direction as + direction. Please pay attention to the sign of each physical quantity, such as velocity, acceleration, and displacement, etc. Useful formula: v = vi + a×t, or d = v0×t + ½ a × t2, Weight = mg, Newotn’s 2nd Law: Net force Fnet = ma (1). What is the acceleration of the elevator during the 1st 4.0 seconds of the ride? Is the direction of…arrow_forwardA block of mass m=5.1kg is acted on by a force of magnitude F, as shown in the figure. The force makes an angle θ=330 with the horizontal. The coefficients of kinetic and static frictions between the surface and the block are µk=0.21 and µs=0.22, respectively. What is F is the block moves with constant speed? (Take g=9.8 m/s2). Express your answer using one decimal place.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY