Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.8, Problem 5.7QQ
To determine
The direction of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 17-year-old employee working for Southern Virginia College's (SVC) bookstore during the summer months is helping prepare for Fall sales. It's a good way to make extra money, and the teen is saving for a car.
Books from one supplier are shipped to the SVC bookstore in large crates equipped with rope handles on all sides. On one occasion, the teen momentarily pulled with a force of 707 N at an angle of 33.7° above the horizontal to accelerate a 121-kg crate of books. The coefficient of friction between the crates and the vinyl floor is 0.55.
Determine the acceleration experienced by the crate in m/s2. Use the approximation g ≈ 10 m/s2.
A 1.00 × 103-N crate is being pushed across a level floor at a constant speed by a force → F of 3.00× 102 N at an angle of 20.0° below the horizontal, as shown in Figure a. (a) What is the coefficient of kinetic friction between the crate and the floor? (b) If the 3.00 × 102-N force is instead pulling the block at an angle of 20.0° above the horizontal, as shown in Figure b, what will be the acceleration of the crate? Assume that the coefficient of friction is the same as that found in part (a).
A 16-year-old employee working for Southern Virginia College's (SVC) bookstore during the
summer months is helping prepare for Fall sales. It's a good way to make extra money, and
the teen is saving for a car.
Books from one supplier are shipped to the SVC bookstore in large crates equipped with
rope handles on all sides. On one occasion, the teen momentarily pulled with a force of
708 N at an angle of 34.2° above the horizontal to accelerate a 114-kg crate of books. The
coefficient of friction between the crates and the vinyl floor is 0.587.
Determine the acceleration experienced by the crate in m/s². Use the approximation g
10 m/s².
Answer:
m/s² (rounded to the hundredths or thousandths place)
Chapter 5 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An eagle descends steeply onto its prey. Its weight (the gravitational force on the eagle), of magnitude 60.0 N, points downward in the -y-direction. The lift force exerted on the eagle’s wings by the air, also of magnitude 60.0 N, is at an angle of 20.0° from the vertical (the +y-direction) and 70.0° from the +x-direction. The drag force (air resistance) exerted on the eagle by the air has magnitude 15.0 N and is at an angle of 20.0° from the-x-direction and 70.0° from the +y-direction. Find the x- and y-components of the net external force on the eagle, and find the force’s magnitude and direction.arrow_forwardYou are playing with your daughter in the snow. She sits on a sled and asks you to slide her across a flat, horizontal field. You have a choice of (a). Pushing her from behind by applying a force downward on her shoulders at 30° below the horizontal. (b). Attaching a rope to the front of the sled and pulling with a force at 30° above the horizontal. Which would be easier for you and why?arrow_forwardIn the figure below, a block of mass 7.28 kg is pulled along a horizontal frictionless floor by a cord that exerts a force of magnitude F= 11.5.0 N at an angle 0 = 36.0°. (a) What is the magnitude of the normal force? (b) The force magnitude F is slowly increased. What is its value just before the block is lifted (completely) off the floor? (c) What is the magnitude of the block's acceleration just before it is lifted (completely) off the floor?arrow_forward
- You are trying to slide a sofa across a horizontal floor. The mass of the sofa is 2.0 x 102kg, and you need to exert a force of 3.5 x 102N to make it just begin to move. (a) Calculate the coefficient of static friction between the floor and the sofa.(b) After it starts moving, the sofa reaches a speed of 2.0 m/s after 5.0 s. Calculate the coefficient of kinetic friction between the sofa and the floor.arrow_forwardA roofer is shingling a roof having a slope of 30.0°. The roofer is pulling a bundle of shingles, X, up the roof with a rope. Another rope connects bundle X to bundle Y farther down the roof, as shown. Each bundle has a mass of 18.0 kg. The coefficient of static friction is 0.550 . What force must the roofer exert to start the shingles moving up the roof?arrow_forwardA 50.0-kg crate is being pulled along a horizontal surface. The pulling force is 150 N and is directed 30.0° above the horizontal. The coefficient of kinetic friction between the crate and the surface is 0.3 9) What is the normal force exerted by the surface on the box? (a) 490 N (b) 415 N (c) 340 N 10) What is the frictional force acting on the box? (a) 147 N (b) 150 N (c) 50 N 11) What is the x component of the pulling force? (a) 75 N (b) 130 N 12) What is the acceleration of the box? (d) 125 N (d) 150 N (c) 9.8 N (d) 150 Narrow_forward
- A box of mass M = 5.0 kg is on a rough ramp inclined at an angle 0 = 30° to the horizontal as shown. The coefficient of static friction between the box and the ramp is 0.30. A person is applying a horizontal force, F, to the box in an attempt to keep it from sliding down. Find the magnitude of the minimum force the person needs to apply in this way to keep the box stationary. (A) F = 11.6 N (B) F = 15.6 N (C) F = 16.4 N (D) F = 25.4N (E) F = 36.6N Person pushing horizontally with a force F on a box of mass M = 5.0 kg that is on an incline which makes an angle 0 = 30° with the horizontalarrow_forwardYou are a member of an alpine rescue team and must get a box of supplies, with mass 2.80 kg , up an incline of constant slope angle 30.0 degrees so that it reaches a stranded skier who is a vertical distance 3.10 m above the bottom of the incline. There is some friction present; the kinetic coefficient of friction is 6.00×10^−2. Since you can't walk up the incline, you give the box a push that gives it an initial velocity; then the box slides up the incline, slowing down under the forces of friction and gravity. Take acceleration due to gravity to be 9.81 m/s2. Use the work-energy theorem to calculate the minimum speed v that you must give the box at the bottom of the incline so that it will reach the skier.arrow_forwardProblem 6. A 6.0kg block is placed on top of a 9.0kg block. A horizontal force of 50.0N is applied at an angle to the 9.0kg block, and the 6.0kg block is tied to the wall by a rope. The coefficient of kinetic friction between the two blocks is 0.25, and the coefficient of friction between the 9.0kg block and the ground surface is 0.30. (a) Draw a free body diagram for each block and identify the action-reaction forces between the blocks. (b) Determine the tension in the rope. (c) Determine the magnitude of the acceleration of each block. 6.0kg F = 50.0N 15° 9.0kgarrow_forward
- A car (m = 1630 kg) is parked on a road that rises 11° above the horizontal. What are the magnitudes of (a) the normal force and (b) the static frictional force that the ground exerts on the tires?arrow_forwardA cart for hauling ore out of a gold mine has a mass of 429 kg, including its load. The cart runs along a straight stretch of track that climbs a shallow 4.33° incline. A donkey, which is trudging along and to the side of the track, has the unenviable job of pulling the cart up the slope with a 399 N force for a distance of 113 m by means of a rope that is parallel to the slope but makes an angle of 15.1° with the track. The coefficient of friction for the cart's wheels on the track is 0.0161 Use g=9.81 m/s^2, and note that angle A in the image is the angle of the incline while angle B is the angle the rope makes with the track. Find the work ?dthat the donkey performs on the cart during this process. Find the work ?g that the force of gravity performs on the cart during this process. Calculate the work ?f done on the cart by friction during this process.arrow_forwardTwo sheets of plywood A and B lie on the bed of the truck. They have the same weight W, and the coefficient of static friction between the two sheets of wood and between sheet B and the truck bed is µg. (a) If you apply a horizontal force to sheet A and apply no force sheet B to move? What force is necessary to cause sheet A to start to sheet B, can you slide sheet A off the truck without causing moving? (b) If you prevent sheet A from moving by exerting a horizontal force on it, what horizontal force on sheet B is necessary to start it moving? ܥܪ ܩ A B Larrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY