Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 38AP
Why is the following situation impossible? A book sits on an inclined plane on the surface of the Earth. The angle of the plane with the horizontal is 60.0°. The coefficient of kinetic friction between the book and the plane is 0.300. At time t = 0, the book is released from rest. The book then slides through a distance of 1.00 m, measured along the plane, in a time interval of 0.483 s.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A mass m slides up an incline (with = 32.1 degrees above the horizontal) until it stops momentarily because of friction. The coefficient of static friction between the mass and incline is 0.9; the coefficient of kinetic friction between the mass and incline is 0.4. At a given instant, the mass is moving with speed of 4.3 m/s up the incline. How far beyond this point along the incline will the mass move before it comes to a stop?
A 0.30 kg puck is being pushed across a table with a horizontal force of 2.0 N. It starts from rest and is pushed for 13 seconds, ending with a speed of 1 m/s. Calculate the coefficient of friction μk between the puck and the table.
A block is sliding down a ramp at an angle of 0 = 16° to the horizontal. Its initial
speed is 2.8 m/s. After sliding 13.6 m along the ramp, it comes to a rest. What is the
coefficient of kinetic friction, µ., between the block and the ramp?
Ө
Chapter 5 Solutions
Physics for Scientists and Engineers
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Charlie is playing with his daughter Toney in the...Ch. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - One or more external forces, large enough to be...Ch. 5 - A 3.00-kg object undergoes an acceleration given...
Ch. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - The force exerted by the wind on the sails of a...Ch. 5 - Review. Three forces acting on an object are given...Ch. 5 - If a single constant force acts on an object that...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - A block slides down a frictionless plane having an...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - A simple accelerometer is constructed inside a car...Ch. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Before 1960m people believed that the maximum...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - You are working as a letter sorter in a U.S Post...Ch. 5 - You have been called as an expert witness for a...Ch. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Review. A Chinook salmon can swim underwater at...Ch. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Why is the following situation impossible? A book...Ch. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - An inventive child named Nick wants to reach an...Ch. 5 - A rope with mass mr is attached to a block with...Ch. 5 - In Example 5.7, we pushed on two blocks on a...Ch. 5 - In the situation described in Problem 41 and...Ch. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - You are working as an expert witness for the...Ch. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - An 8.40-kg object slides down a fixed,...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Why is the following situation impossible? A...Ch. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A mobile is formed by supporting four metal...Ch. 5 - In Figure P5.55, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the vector components of the position of a particle moving in the xy plane as a function of time are x(t)=(2.5ms2)t2i and y(t)=(5.0ms3)t3j, when is the angle between the net force on the particle and the x axis equal to 45?arrow_forwardOne way to determine the coefficients of friction (μs and μk) between two surfaces is to use an incline plane. Consider a block of mass m = 2.0kg initially at rest at the top of the ramp. The angle θ is increased slowly. The object starts to slide down the ramp when θ = 40 . Once the block slides down, the angle is kept constant. The block travels along the ramp by distance d = 2.0 m in time t = 1.5 s. (a) Determine the value of μs(b) Determine the value of μkarrow_forwardA block of mass 4.6 kg is sliding down a ramp with an initial speed of 1.5 m/s. The ramp is inclined from the horizontal by an angle theta = 34.9 degrees and the coefficient of kinetic friction is uk = 0.73. What is the magnitude of the displacement of the block along the ramp from the initial time until it stops?arrow_forward
- A penguin slides at a constant velocity of 1.4 m/s down an icy incline. The incline slopes above the horizontal at an angle of 6.9?degrees. At the bottom of the incline, the penguin slides onto a horizontal patch of ice. The coefficient of kinetic friction between the penguin and the ice is the same for the incline as for the horizontal slope. How much time is required for the penguin to slide to a halt after entering the horizontal patch of ice?arrow_forwardTwo blocks are connected over a massless, frictionless pulley. Block m1 has a mass of 1.00 kg and block m2 has a mass of 0.400 kg. The angle θ of the incline is 30.0°. The coefficients of static friction and kinetic friction between block m1 and the incline are ?k = 0.400 and ?s = 0.500, respectively. What is the magnitude of the tension in the string?arrow_forwardYou are lowering two boxes, one on top of the other, down the ramp shown in the figure by pulling on a rope parallel to the surface of the ramp. Both boxes move together at a constant speed of 15.0 cm/s. The coefficient of kinetic friction between the ramp and the lower box is 0.486, and the coefficient of ▶ ▶ ▼ static friction between the two boxes is 0.823. You may want to review (Page) For help with math skills, you may want to review: Resolving Vector Components Calculating Trigonometric Function Values For general problem-solving tips and strategies for this topic, you may want to view a Video Tutor Solution of Toboggan ride with friction II. Part A Part B Part C 32.0 kg 48.0 kg IVE ΑΣΦ T= 356 4.75 m What force T do you need to exert to accomplish this? Express your answer in newtons. ► View Available Hint(s) 2.50 m ? Narrow_forward
- A block with a mass of 4.83 kg is at rest on an inclined surface. The surface makes an angle of 27.9° relative to horizontal. The coefficients of static and kinetic friction are 0.740 and 0.380 respectively. The block remains at rest. What is the magnitude of the frictional force that acts on the block?arrow_forwardA 129 kg crate is sitting at the top of a ramp, which is inclined at an angle of 20 degrees with respect to the horizontal. Someone gives the crate a quick shove to get it moving, after which it slides down the ramp without any further assistance. The coefficient of kinetic friction between the crate and the ramp is ls = 0.23. What is the magnitude of the acceleration (in m/s?) of the crate?arrow_forwarda 2 kg golf ball moves along an x axis according to x(t) = 10t^3 - 2.80t^2 + 7.4t +15 , with x in meters and t in seconds . in unit-vector notation , what is the net force acting on the particle at t= 5.20 s?arrow_forward
- A person pushes a block of mass M = 6.0 kg with a constant speed of 5.0 m/s straight up a flat surface inclined at 30.0 above the horizontal. The coefficient of kinetic friction between the block and the surface is 0.40. What is the net force acting on the block? 51 N 31 N 21 N 0 Narrow_forwardA man is trying to push a 75.0 kg rock across the ground by applying a constant force P at an angle θ = 27.5 ̊ below the horizontal. The coefficients of friction between the rock and the ground are μk = 0.430 and μs = 0.570. (a) If the rock is initially at rest, what force does the man need to apply to get it to start moving? (b) If the rock is already in motion, what force does he need to apply to get it accelerate at 2.75 m/s2?arrow_forwardA block of mass m is sitting on a block of mass M. The bottom block is sitting on a horizontal floor. The coefficient of static friction between the blocks is μs1, and the coefficient of static friction between the bottom block and the floor is μs2. What is the minimum pull force F on the bottom block so that the blocks begin to move? Given that the coefficient of kinetic friction between the bottom block and the floor is μk, what is the maximum pull force F so that there is no slipping between the blocks?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY