Concept explainers
You are a summer intern in a clinical hematology lab. The lab director gives you a sample of a patient's blood proteins and asks you to characterize the thrombin in the sample. She also tells you that thrombin is a serine protease important in blood clotting (see Table 5.3), and this patient is a newborn with uncontrolled bleeding.
a. To characterize the thrombin in the sample, you must remove two proteins that interfere with the thrombin activity assay: cytochrome c and lactoglobin. You find some CM-cellulose (see Figure 5A.5) and a phosphate buffer (pH 6.4) on the shelf in your lab. You decide to load the protein sample onto a column of CM-cellulose equilibrated in the pH = 6.4 buffer. Predict the order of elution for the three proteins shown in the accompanying table. At pH = 6.4, which protein(s) do you predict will remain bound to the column?
b. List two different ways you could change the buffer to elute the bound protein(s) and achieve proper separation of the proteins.
c. You are surprised to observe that the patient's thrombin flows through the CM-cellulose column at pH = 6.4 and does not bind. Confident in your technique, you suspect the patient's thrombin is different from wild-type thrombin. Using a different buffer system, you manage to purify some of the patient's thrombin, and you submit the purified sample for amino acid sequencing. The sequence analysis shows that the patient's thrombin contains a mutation in the enzyme active site. A lysine residue in the wild type has been mutated to an asparagine in the patient's thrombin. Does this mutation explain the anomalous CM- cellulose binding behavior you observed?
d. How many
e. Based on their side-chain structures, compare and contrast the potential of Lys and Asn to form noncovalent interactions. In other words, can each form H bonds and/or salt bridges and/or van der Waals contacts?
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Biochemistry: Concepts and Connections
- Biochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forwardDraw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forward
- Identify the type of bond in the following disaccharides. Number your carbons to show work. Explain your answer thoroughly. Draw the number of carbons also.arrow_forwardDraw and explain your answer thoroughly: a. What is the molar mass of aspirin (C9H8O4)?b. What is the mass of 0.00225mol of aspirin?c. How many moles of aspirin are present in 500mg of aspirin?arrow_forwardGeranylgeranyl pyrophosphate 5 is converted by general acid-base catalysis to 6, and then to the natural product 7. For clarity only limited atom numbers are shown, but the main chain carbons are numbered 1 to 16, and the off-chain methyl substituents are numbered 17-20. A. Based on what you specified in A, use curly arrows on the drawing above to convert 5 to 6, and 6 to 7. Invoke general acids and general bases as needed, and draw in hydrogens as necessary . B. On the structure of 7, write in the atom numbers for the carbons marked with an asteriskarrow_forward
- α-Pinene (4) is synthesized enzymatically from nerol pyrophosphate 1. Drawn an arrow-pushing mechanism from 1 to 2 to 3 to 4; add explicit hydrogens to clarify, if needed.arrow_forwardA reverse phase column chromatography separates proteins according to their polarity. Which pentapeptide will be eluted FIRST when chromatographed at pH 7 using a reverse phase column such as a C-18 column? Peptide Sequence (from N-terminal to C-terminal) AKGED GAAVF ALLLI MCYAG GAAVF MCYAG ALLLI AKGEDarrow_forwardMelting of three DNA samples with varying lengths was monitored by increase of ultraviolet light absorbance at 260 nm. Which is the shortest DNA? A B Carrow_forward
- Select the CORRECT description of the peptide bond. The peptide bond can freely rotate around the peptide bond. The peptide bond is non-polar, hydrophobic and does not have a dipole. The peptide bond is most stable in the cis configuration. The peptide bond is rigid and planar. The peptide bond has a mix of single and double bond characters. The peptide bond is most stable in the trans configuration.arrow_forwardBelow is a fractional saturation curve for O2 binding to adult hemoglobin. Assume that curve Y represents a system at pH 7.4 and with a normal physiological level of 2,3-BPG. Curve Z represents a system that ___________________ Curve Z: is at pH 7.4 with a higher than normal physiological level of 2,3-BPG. is at pH 7.4 with a normal physiological level of 2,3-BPG but with a decreased level of CO2. has a higher pH with a normal physiological level of 2,3-BPG. has a higher pH with a lower than physiological level of 2,3-BPG.arrow_forwardWhich is a homotropic positive effector of aspartate transcarbamoylase (ATCase)? oxygen CTP aspartate ATParrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning