
Biochemistry: Concepts and Connections (2nd Edition)
2nd Edition
ISBN: 9780134641621
Author: Dean R. Appling, Spencer J. Anthony-Cahill, Christopher K. Mathews
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 11P
Interpretation Introduction
(a) Interpretation:
To determine the number of disulfide bonds and the S-S bond from the given information.
Introduction:
The apamine is a neurotoxin, which is comprised of 18 amino acids.
Interpretation Introduction
(b) Interpretation:
To determine the location of the disulfide bonds.
Introduction:
There are 4 cysteine in the chain, hence, there must be 2 disulfide bond.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem 15 of 15
Submit
Using the following reaction data
points, construct Lineweaver-Burk
plots for an enzyme with and without
an inhibitor by dragging the points to
their relevant coordinates on the
graph and drawing a line of best fit.
Using the information from this plot,
determine the type of inhibitor
present.
1
mM-1
1
s mM
-1
[S]'
V'
with 10 μg per
20
54
10
36
20
5
27
2.5
23
1.25
20
Answer:
|||
12:33
CO
Problem 4 of 15
4G 54%
Done
On the following Lineweaver-Burk
-1
plot, identify the by dragging the
Km
point to the appropriate value.
1/V
40
35-
30-
25
20
15
10-
T
Км
-15
10
-5
0
5
|||
10
15
№20
25
25
30
1/[S]
Г
powered by
desmos
1:30
5G 47%
Problem 10 of 15
Submit
Using the following reaction data
points, construct a Lineweaver-Burk
plot for an enzyme with and without a
competitive inhibitor by dragging the
points to their relevant coordinates
on the graph and drawing a line of
best fit.
1
-1 1
mM
[S]'
s mM¹ with 10 mg pe
20
V'
54
10
36
>
ст
5
27
2.5
23
1.25
20
Answer:
|||
Chapter 5 Solutions
Biochemistry: Concepts and Connections (2nd Edition)
Ch. 5 - Prob. 1PCh. 5 - Draw the structure of the peptide DTLH, showing...Ch. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Given the following peptide SEPIMAPVEYPK a....Ch. 5 - A mutant form of polypeptide hormone angiotensin...Ch. 5 - Prob. 10P
Ch. 5 - Prob. 11PCh. 5 - a. Write a possible sequence for an mRNA segment...Ch. 5 - 13. Assume the following portion of an mRNA Find a...Ch. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - You are a summer intern in a clinical hematology...Ch. 5 - Prob. 20PCh. 5 - Despite the fact that many peptides have critical...Ch. 5 - Based on the information in Figure 5.17, which...Ch. 5 - If you want to purify a DNA-binding protein from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- Problem 14 of 15 Submit Using the following reaction data points, construct Lineweaver-Burk plots for an enzyme with and without an inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Using the information from this plot, determine the type of inhibitor present. 1 mM-1 1 s mM -1 [S]' V' with 10 μg per 20 54 10 36 20 5 27 2.5 23 1.25 20 Answer: |||arrow_forward12:36 CO Problem 9 of 15 4G. 53% Submit Using the following reaction data points, construct a Lineweaver-Burk plot by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Based on the plot, determine the value of the catalytic efficiency (specificity constant) given that the enzyme concentration in this experiment is 5.0 μ.Μ. 1 [S] ¨‚ μM-1 1 V sμM-1 100.0 0.100 75.0 0.080 50.0 0.060 15.0 0.030 10.0 0.025 5.0 0.020 Answer: ||| O Гarrow_forwardProblem 11 of 15 Submit Using the following reaction data points, construct a Lineweaver-Burk plot for an enzyme with and without a noncompetitive inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. 1 -1 1 mM [S]' 20 V' s mM¹ with 10 μg per 54 10 36 > ст 5 27 2.5 23 1.25 20 Answer: |||arrow_forward
- Problem 13 of 15 Submit Using the following reaction data points, construct Lineweaver-Burk plots for an enzyme with and without an inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Using the information from this plot, determine the type of inhibitor present. 1 mM-1 1 s mM -1 [S]' V' with 10 μg per 20 54 10 36 20 5 27 2.5 23 1.25 20 Answer: |||arrow_forward12:33 CO Problem 8 of 15 4G. 53% Submit Using the following reaction data points, construct a Lineweaver-Burk plot by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Based on the plot, determine the value of kcat given that the enzyme concentration in this experiment is 5.0 μM. 1 [S] , мм -1 1 V₁ s μM 1 100.0 0.100 75.0 0.080 50.0 0.060 15.0 0.030 10.0 0.025 5.0 0.020 Answer: ||| Гarrow_forward1:33 5G. 46% Problem 12 of 15 Submit Using the following reaction data points, construct a Lineweaver-Burk plot for an enzyme with and without an uncompetitive inhibitor by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. 1 -1 1 mM [S]' 20 V' s mM¹ with 10 μg per 54 10 36 > ст 5 27 2.5 23 1.25 20 Answer: |||arrow_forward
- 12:33 CO Problem 7 of 15 4G. 53% Submit Using the following reaction data points, construct a Lineweaver-Burk plot by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Based on the plot, determine the value of Vmax. Report your answer to three significant figures. 1 , mM-1 1 [S] V' sμM-¹ 100.0 0.100 75.0 0.080 50.0 0.060 15.0 0.030 10.0 0.025 5.0 0.020 Answer: ||| Гarrow_forward12:33 CO Problem 5 of 15 4G 54% Done On the following Lineweaver-Burk 1 plot, identify the by dragging the Vmax point to the appropriate value on the line. NI 35 30- 25 20- 15- 10 5. 1 Vmax -15 10 -5 0 5 10 15 20 20 ||| で Г 25 30 1/[S]arrow_forward12:20 V 0.1- 0:09. 0.08 0:07 0.06 -0.05- 0:04- -0.03- -0.02- 4G 56% Problem 1 of 15 Done On the following Michaelis-Menten plot, estimate the value of - Vmax by 1 2 dragging the line to the appropriate value on the y-axis. 0.01 V max 0 0.5 ||| 1.5 2.5 3.5 4 ISLarrow_forward
- 12:33 CO 4G 54% Problem 6 of 15 Submit Using the following reaction data points, construct a Lineweaver-Burk plot by dragging the points to their relevant coordinates on the graph and drawing a line of best fit. Based on the plot, determine the Km. 1 mM-1 1 [S]' " s mM-1 V 100.0 0.100 75.0 0.080 50.0 0.060 15.0 0.030 10.0 0.025 5.0 0.020 Answer: ||| Гarrow_forwardV 0.1- 0:09 0:08 0:07- -0.06 -0.05 0:04- 0:03 0:02 0:01- Problem 2 of 15 Done On the following Michaelis-Menten plot, estimate the value of Kм by dragging the point to the appropriate value on the x-axis. I T | 0 0.5 1.5 2 KM -0:01- ||| 25 2.5 3 3.5 4 Г [S] powered by desmosarrow_forward9. Sketch NMR of the following compound. Clearly label each H-atom in the molecule and where it appears in your NMR. Clearly label the splitting (coupling) pattern (singlet, doublet etc) for each set of equivalent protons. For each signal, clearly label the integration value or the number of protons represented by the signal. Brarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON

Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman

Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman

Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY

Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning

Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning

Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON
Biomolecules - Protein - Amino acids; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=ySNVPDHJ0ek;License: Standard YouTube License, CC-BY