Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.4, Problem 4.2QQ
An object experiences no acceleration. Which of the following cannot be true for the object? (a) A single force acts on the object. (b) No forces act on the object. (c) Forces act on the object, but the forces cancel.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A train locomotive pulls a train with a mass of 1.10 ✕ 10^7kg on level rails. The locomotive exerts a constant force of 6.90 ✕ 10^5N on the train. How much time does it take to increase the speed of the train from rest to 64.0 km/h? (Ignore any resistance force from the rails on the wheels of the train. Enter your answer in minutes.)
A constant net force acts on an object. Which of the following best describes the object's motion?
The object is moving with an increasing acceleration.
The object is moving with a constant acceleration.
The object is moving with a decreasing acceleration.
The object is moving with a constant velocity.
The object is at rest; its position is constant.
A force applied to an object of mass m1 produces an acceleration of 3.20 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.70 m/s2.
(b) If m1 and m2 are combined into one object, find its acceleration under the action of the force.
Chapter 4 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 3.00-kg object is moving in a plane, with its x and y coordinates given by x = 5t2 1 and y = 3t3 + 2, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.00 s.arrow_forwardA force F applied to an object of mass m1, produces an acceleration of 3.00 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.00 m/s2. (a) What is the value of the ratio m1/m2,? (b) m1 and m2 are combined into one object, find its acceleration under the action of the force F.arrow_forwardIf a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forward
- Does the ground need to exert a force on you for you to jump off the ground, or do you need to exert a force on the ground? If the ground must exert a force on you, is that force greater than the force you exert on the ground?arrow_forwardThree forces acting on an object are given by F1 = (-2.00 i + 2.00 j) N, and F2 = (5.00 i – 3.00j) N, and F3 = (- 45.0 i) N. The object experiences an acceleration of magnitude 3.75 m/s2. (a)What is the direction of the acceleration? (b) What is the mass of the object? (c) If the object isinitially at rest, what is its speed after 10.0 s? (d) What are the velocitycomponents of the object after 10.0 s?arrow_forwardThe net force acting on an object is zero. Which one of the following is TRUE? O The object can only be traveling with a velocity that is changing. OThe object can only be stationary O The object can either be stationary or traveling with a constant velocity O The object can only be traveling with a constant velocityarrow_forward
- Suppose an object slides up a ramp, slowly comes to a stop, then slides back down. The net force (which is the sum of all the forces acting on the object) is: Negative (Down The Ramp) O Positive (Up The Ramp) O Zero O Cannot be detennined from the question.arrow_forwardA force applied to an object of mass m1 produces an acceleration of 3.10 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.20 m/s2. If m1 and m2 are combined into one object, find its acceleration under the action of the force .arrow_forwardThree forces acting on an object are given by F₁ = (−2.2î + 6.85ĵ) N, F₂ = (4.75î – 1.25ĵ) N, and F3 = (-401) N. The object experiences an acceleration of magnitude 3.80 m/s². (a) What is the direction of the acceleration? 98.50 X Note that the direction of the acceleration is the same as the direction of the net force.° (counterclockwise from the +x-axis) (b) What is the mass of the object? 9.964 kg (c) If the object is initially at rest, what is its speed after 11.0 s? 41.8 m/s (d) What are the velocity components of the object after 11.0 s? (Let the velocity be denoted by v.) ✓ = -41.34 m/s +6.18arrow_forward
- Two forces act on a body. One of them is 7î – 13ĵ. What is the value of the other force? a) 7î – 13ĵ b) -7î + 13ĵ c) 7î + 13ĵ d) -7î – 13ĵarrow_forwardThree forces acting on an object are given by F1 = (−1.5î + 7.45ĵ) N, F2 = (5.25î − 1.1ĵ) N, and F3 = (−42î) N. The object experiences an acceleration of magnitude 3.70 m/s2. (a) What is the direction of the acceleration? ° (counterclockwise from the x-axis). (b) What is the mass of the object? kg. (c) If the object is initially at rest, what is its speed after 18.0 s? m/s. (d) What are the velocity components of the object after 18.0 s?arrow_forwardA 8000 kg engine pulls a train of 5 wagons, each of 2000 kg, along a horizontal track. If the engine exerts a force of 40000 N and the track offers a friction force of 5000 N, then calculate: (a) the net accelerating force (b) the acceleration of the trainarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY