A roll of wrapping paper is 30 inches wide. When you unroll the wrapping paper and cut off a portion, you get a rectangular piece of wrapping paper that is 30 inches wide and can have various lengths. The wrapping paper has a design of stars on it. If you were to subdivide the paper into 2-inch-by-2-inch squares, each such square would have 25 stars on it. Use this information about the wrapping paper in parts (a), (b), and (c).
a. How long a piece of the wrapping paper would you need to get at least 1000 stars? Explain your reasoning.
b. How long a piece of the wrapping paper would you need to get at least 1,000,000 stars? Explain your reasoning. Realistically, could this length come from a single roll of wrapping paper? Why or why not?
c. How long a piece of the wrapping paper would you need to get 1,000,000,000 stars? Explain your reasoning. If you had this length of wrapping paper and you wanted to show it to the children in your class, could you roll it out in the school yard? Why or why not?
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Mathematics for Elementary Teachers with Activities (5th Edition)
- Task: 3 Numerical Analysis: Finite Element Method Refer to Question 43 in the provided document. Link: https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharingarrow_forward(a+b) R2L 2+2*0=? Ma state without proof the uniqueness theorm of probability function suppose thatPandQ are probability measures defined on the same probability space (Q, F)and that Fis generated by a π-system if P(A)=Q(A) tax for all A EthenP=Q i. e. P(A)=Q(A) for alla g // معدلة 2:23 صarrow_forward3. Construct a triangle in the Poincare plane with all sides equal to ln(2). (Hint: Use the fact that, the circle with center (0,a) and radius ln(r), r>1 in the Poincaré plane is equal to the point set { (x,y) : x^2+(y-1/2(r+1/r)a)^2=1/4(r-1/r)^2a^2 }arrow_forward
- n. g. = neutral geometry <ABC = angle ABC \leq = less or equal than sqrt{x} = square root of x cLr = the line in the Poincaré plane defined by the equation (x-c)^2+y^2=r^2 1. Find the bisector of the angle <ABC in the Poincaré plane, where A=(0,5), B=(0,3) and C=(2,\sqrt{21})arrow_forwardTask: 2 Multivariable Calculus: Divergence Theorem Refer to Question 42 in the provided document. Link: https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharingarrow_forward2. Let l=2L\sqrt{5} and P=(1,2) in the Poincaré plane. Find the uniqe line l' through P such that l' is orthogonal to l.arrow_forward
- 38 Topology: Brouwer Fixed-Point Theorem Task: Refer to Question 38 in the provided document. Link: https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharingarrow_forwardTask: o Functional Analysis: Spectral Theorem Refer to Question 40 in the provided document. Link: https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharingarrow_forwardTask: Linear Algebra: Jordan Canonical Form Refer to Question 31 in the provided document. Link: https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharingarrow_forward
- 35 Ordinary Differential Equations: Nonlinear Systems Task: Refer to Question 35 in the provided document. Link: https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharingarrow_forwardTask: 4 Abstract Algebra: Galois Theory Refer to Question 34 in the provided document. Link: https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharingarrow_forward33 Vector Calculus: Green's Theorem Task: Refer to Question 33 in the provided document. Link: https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharingarrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning