Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 74AP
To determine
The reason why it is not possible for an atom in a particular state to have five
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why is the following situation impossible? An experiment is performed on an atom. Measurements of the atom when it is in a particular excited state show five possible values of the z component of orbital angular momentum, ranging between 3.16 x 10-34 kg ⋅ m2/s and -3.16 x 10-34 kg ⋅ m2/s.
The electron in a certain hydrogen atom has an angular momentum of 2.583×10−34 J.s. What is the largest possible magnitude for the
z-component of the angular momentum of this electron?
For accuracy, use h=6.626×10−34 J⋅s. find Number Units
Quantum Physics
Chapter 42 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Similar questions
- The quantum state of an electron in an atom is described by quantum numbers n = 6, ℓ = 4, and mℓ = 1. The orbital total angular momentum of the electron is measured to be x × h/2π, where h is Planck’s constant. What is the number x(remember to use the scientific notation)?arrow_forwardIt may be argued on theoretical grounds that the radius of the hydrogen atom should depend only on the fundamental constants h, e, the electrostatic force constant k = 1/4πℰ0, and m (the electron’s mass). Use dimensional analysis to show that the combination of these factors that yields a result with dimensions of length is h2kme2.arrow_forwardThe two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart. The mass of the carbon atom is 1.993x10-26 kg. The mass of the oxygen atom is 2.656x10-26 kg. Spectroscopic measurements show that adjacent vibrational energy levels for the CO molecule are 0.269 eV. What is the effective spring constant of the CO molecule? (Give your answer in N/m.)arrow_forward
- The quantum state of an electron in an atom is described by quantum numbers n = 6, ℓ = 5, and mℓ = 2. The z-component orbital angular momentum of the electron is measured to be x × h/2π, where h is Planck’s constant. What is the number x (remember to use the scientific notation)?arrow_forwardThe work function of a certain metal is 226.7 kJ / mol. How fast must an He atom (4 amu) collide with the metal to be able to pull an electron from the surface and travel at 1000 m / s? Select one: 8.2619 x 1015m / s None of the above 10647 m / s 337 m / sarrow_forward2. a) Problem 8.3 of Textbook: Calculate the frequency of the hydrogen transition n = 101 → n = 100. b) A light photon emitted from a higher energy level ofn = 3 to a lower energy level of n = 2 in hydrogen has a wavelength of 1 = 656.3 nm. Compute the atom distribution ratio N3/N2 at the equilibrium when temperatures are T = 102K.arrow_forward
- Which of these expressions would yield the wavelength of light in meters emitted when an electron drops from orbit n = 3 to n = 2 in a Bohr hydrogen atom? Given h = 4.14 x 10-15 eVs and c = 3.00 x 108m/s. a. 1.89 x h x c b. hc/3.4 c. (1.51 + 3.4)/hc d. hc/1.89 e. 1.89/hxcarrow_forwardThe figure shows a model of the energy levels of an atom. The atom is initially in state W, which is the ground state for the atom. After a short amount of time, the atom then transitions to state X. The atom then transitions to state Y before transitioning to state Z. The atom then transitions back to state W. Which of the following descriptions is correct about the atom as it transitions from state W to each subsequent state until it finally returns to its original state?arrow_forwardWhat is the orbital radius of the n = 3 excited state in the Bohr model of the hydrogen atom in nanometers? The ground-state radius of the hydrogen atom is 0.529 × 10-10 m. Please give your answer with 3 decimal places.arrow_forward
- b. An electron and a photon has the same wavelength of 0.21 nm. Calculate the momentum and energy (in eV) of the electron and the photon. (Given c =3.00x108 m s-1, h =6.63 x 1034 J s, me=9.11 x 10-31 kg, mp=1.67 x 1027 kg and e=1.60x1019 C)arrow_forwardChapter 39, Problem 043 In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and (b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius. (a) Number Units eV (b) Number Units eVarrow_forwardA hydrogen atom makes a transition from the n=8 state to the n = 4 state. What is the wavelength of the emitted photon in micrometers? Please give your answer with two decimal places. The lowest level energy state of hydrogen is -13.6 eV. (h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J, c = 3.00 × 108 m/s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning