Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 59P
(a)
To determine
The frequency of the
(b)
To determine
The
(c)
To determine
The range to which the light produced belongs.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The carbon-dioxide laser is one of the most powerful lasers developed. The energy difference between the two laser levels is 0.117 eV.(a) What is the frequency of the radiation emitted by this laser?(b) In what part of the EM spectrum is such radiation found?
NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low-mass sail and the energy and momentum of sunlight for propulsion. (a) Should the sail be absorbing or reflective? Why? (b) The total power output of the sun is 3.9 * 10^26 W. How large a sail is necessary to propel a 10,000 kg spacecraft against the gravitational force of the sun? Express your result in square kilometers. (c) Explain why your answer to part (b) is independent of the distance from the sun.
NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low-mass sail and the energy and momentum of sunlight for propulsion. (a) Should the sail be absorbing or reflective? Why? (b) The total power output of the sun is 3.9 x 1026 W. How large a sail is necessary to propel a 10,000 kg spacecraft against the gravitational force of the sun? Express your result in square kilometers. (c) Explain why your answer to part (b) is independent of the distance from the sun.
Chapter 42 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The carbon-dioxide laser is one of the most powerful lasers developed. The energy difference between the two laser levels is 0.117 eV. Suppose a more powerful laser is developed, where the energy difference between the two laser levels is 0.240 ev. (a) What is the frequency of the radiation emitted by this laser? Hz (b) In what part of the EM spectrum is such radiation found? microwave infrared visible ultravioletarrow_forwardThe sun’s surface temperature is about 5800 K.(a) About how much electromagnetic wave energy does a cubic meter of space near thesun’s surface contain?A cubic meter of space near the sun's surface contains ____ J/m3 ofelectromagnetic wave energy.(b) What is the most probable photon energy εp (in eV) for photons emitted by the sun?The most probable energy εp for photons emitted by the sun is ______ eVarrow_forwardA plane electromagnetic sine wave is shown propagating in the x-direction. If the wavelength is 50 m and the electric field vibrates in the XY plane with an amplitude of 22 V/m. Calculate: a) The frequency of oscillation of the wave. b) The magnitude of the maximum B-field and mention along which axis it oscillates. c) Write an expression for B of the form: B=Bmax cos(kx-wt)arrow_forward
- (a) How many minutes does it take a photon to travel from the Sun to the Earth? in minutes (b) What is the energy in eV of a photon with a wavelength of 533 nm? in eV (c) What is the wavelength (in m) of a photon with an energy of 1.03 eV? in metersarrow_forwardA laser emits 5.73 × 1015 photons per second in a beam of light that has a diameter of 2.30 mm and a wavelength of 514.5 nm. Determine (a) the average electric field strength and (b) the average magnetic field strength for the electromagnetic wave that constitutes the beam. (a) Number M. (b) Number i Units Unitsarrow_forwardA 75 mW laser produces a (polarized) beam of 595 nm light. This light reflects normally off an object that reflects 90 percent of the incident energy. How long does it take this laser to give the surface a momentum of 0.005 kgm/s If the rms electric field inside the beam is 1600 v/m, what is the radius of the beam?arrow_forward
- The intensity of electromagnetic radiation from the sun reaching the earth's upper atmosphere is 1.37kW/m2. Assuming an average wavelength of 680 nm for this radiation, find the number of photons per second that strike a 2.00 m2 solar panel directly facing the sun on an orbiting satellite.arrow_forwardLight with an intensity of 10−10W/m2 is shone perpendicular to the surface a metal that has one free electron per atom. Distance between atoms approx 2, 6A˚. Based on the notion of light as a wave and the assumption that light evenly distributed over the entire metal surface, (a) how much energy each electrons per second? (b) if the electron binding energy is 4.7eV , how long does the electron collect energy to escape the metal surface?arrow_forwardChapter 38, Problem 043 Just after detonation, the fireball in a nuclear blast is approximately an ideal blackbody radiator with a surface temperature of about 0.82 × 107 K. (a) Find the wavelength at which the thermal radiation is maximum and (b) identify the type of electromagnetic wave corresponding to that wavelength. This radiation is almost immediately absorbed by the surrounding air molecules, which produces another ideal blackbody radiator with a surface temperature of about 1.1 x 105 K. (c) Find the wavelength at which the thermal radiation is maximum and (d) identify the type of electromagnetic wave corresponding to that wavelength. (a) Number Units (b) X-ray (c) Number Units m (d) ultraviolevarrow_forward
- An argon-ion laser produces a cylindrical beam of light whose average power is 0.725 W. How much energy is contained in a 2.88-m length of the beam?arrow_forwardTrue FalseThe sun's radiation is most intense in the visible region. True False Radio waves travel in vacuum at a lower speed than the visible light. True False X-rays can be produced in transitions involving inner electrons in an atom. True False A vertical automobile antenna is sensitive to electric fields polarized vertically. True False Visible light is often emitted when valence electrons change their state. True False Gamma rays can be produced in transitions of an atomic nucleus from one state to another. True False The Earth's atmosphere is quite transparent to infrared radiation.arrow_forwardConsider six proposed properties of electromagnetic radiation: wave speeds of 3.00 x 10° km/s and 3.00 x 10°m/s, wavelengths of 563 nm and 0.193 nm, and frequencies of 2.15 x 1018 Hz and 6.26 x 1014 Hz. Place these according to whether they apply only to the X-ray band, only to the visible light band, to both bands, or to neither band. X-ray band only Visible light band only Both bands Neither band Answer Bank frequency of 6.26 × 1014 Hz. speed of 3.00 x 10* m/s speed of 3.00 x 10* km/s frequency of 2.15 × 10'8 Hz wavelength of 0.193 nm wavelength of 563 nmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning