Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 2P
(a)
To determine
The wavelengths of the first three lines in the Paschen series.
(b)
To determine
The region of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The wave function of a hydrogen atom is in an excited state is:
-1/2
W221 = ( m6°)"2 (r/9a) exp(-r/3ao) sin0 cose e“.
(a) What is the most probable value of r in this state? How does it relate to the Bohr model
prediction for the radius?
(b) What is the magnitude of the orbital angular momentum in this state? How does it compare with
the Bohr model prediction?
(c) Find the orientation of the orbital angular momentum in this state.
(d) What is the shortest wavelength photon that the atom can emit making an allowed transition?
Identify the terminal state (in Whilm form) and justify why the transition is allowed,
A hydrogen atom in an n=2, I=1, m1 = -1 state emits a photon when it decays to an n=1 I=0, mI=0 ground state. If the atom is in a magnetic field in the + z direction and with a magnitude of 2.50 T, what is the shift in the wavelength of the photon from zero-field value?
When an electron of an excited hydrogen atom descends, from an initial energy level (ni) to a lower (nf), characteristic electromagnetic radiation is emitted. The Bohr model of the H-atom allows the calculation of ΔE for any pair of energy levels. ΔE is related to the wavelength (λ) of the radiation according to Einstein's equation ( ΔE = [(hc)/λ]). Distinct series of spectral lines have been classified according to nf:
Lyman series:nf=1 (91<λ<123 nm; near-UV).
Balmer series:nf=2 (365<λ<658 nm; visible).
Paschen series:nf=3 (819<λ<1877 nm; near-IR).
Brackett series:nf=4 (1.456<λ<4.054 μm; short-to-mid-λ-IR)
One of the lines in the emission spectrum of the hydrogen atom has a wavelength of λ = 102.6 nm. Identify the value of ninitial. Identify the value of nfinal .
Chapter 42 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When an electron of an excited hydrogen atom descends, from an initial energy level (ni) to a lower (nf), characteristic electromagnetic radiation is emitted. The Bohr model of the H-atom allows the calculation of ΔE for any pair of energy levels. ΔE is related to the wavelength (λ) of the radiation according to Einstein's equation ( ΔE = [(hc)/λ]). Distinct series of spectral lines have been classified according to nf: Lyman series:nf=1 (91<λ<123 nm; near-UV). Balmer series:nf=2 (365<λ<658 nm; visible). Paschen series:nf=3 (819<λ<1877 nm; near-IR). Brackett series:nf=4 (1.456<λ<4.054 μm; short-to-mid-λ-IR) One of the lines in the emission spectrum of the hydrogen atom has a wavelength of λ = 2167 nm. A) Identify the value of nfinal . B) Identify the value of ninitial. (Answer as a whole number)arrow_forwardWhen an electron of an excited hydrogen atom descends, from an initial energy level (ni) to a lower (nf), characteristic electromagnetic radiation is emitted. The Bohr model of the H-atom allows the calculation of ΔE for any pair of energy levels. ΔE is related to the wavelength (λ) of the radiation according to Einstein's equation ( ΔE = [(hc)/λ]). Distinct series of spectral lines have been classified according to nf: Lyman series:nf=1 (91<λ<123 nm; near-UV). Balmer series:nf=2 (365<λ<658 nm; visible). Paschen series:nf=3 (819<λ<1877 nm; near-IR). Brackett series:nf=4 (1.456<λ<4.054 μm; short-to-mid-λ-IR) One of the lines in the emission spectrum of the hydrogen atom has a wavelength of λ = 121.6 nm. Identify the value of ninitial.arrow_forwardWhen an electron of an excited hydrogen atom descends, from an initial energy level (ni) to a lower (nf), characteristic electromagnetic radiation is emitted. The Bohr model of the H-atom allows the calculation of ΔE for any pair of energy levels. ΔE is related to the wavelength (λ) of the radiation according to Einstein's equation ( ΔE = [(hc)/λ]). Distinct series of spectral lines have been classified according to nf: Lyman series:nf=1 (91<λ<123 nm; near-UV). Balmer series:nf=2 (365<λ<658 nm; visible). Paschen series:nf=3 (819<λ<1877 nm; near-IR). Brackett series:nf=4 (1.456<λ<4.054 μm; short-to-mid-λ-IR) One of the lines in the emission spectrum of the hydrogen atom has a wavelength of λ = 93.11 nm.: Identify the value of ninitial.: Identify the value of nfinal . hello, you submitted an answer to this question but It was still not clear to me how you got n intial from the bohr model equation. Can you please provide me with a more clear…arrow_forward
- The wavelengths of the Lyman series for hydrogen are given by = RH(1-2), = 2, 3, 4, ... 1/2 (a) Calculate the wavelengths of the first three lines in this series. nm nm nm (b) Identify the region of the electromagnetic spectrum in which these lines appear. O ultraviolet region O infrared region O x-ray region O visible light region O gamma ray regionarrow_forwardFind the ratio between the wavelengths of the ‘most energetic’ spectral lines in the Balmer and Paschen series of the hydrogen spectrum.arrow_forwardA hydrogen atom in an n = 2, l = 1, ml = -1 state emits a photon when it decays to an n = 1, l = 0, ml = 0 ground state. In the absence of an external magnetic field, what is the wavelength of this photon?arrow_forward
- A photoelectron is emitted from K shell (n = 1) of a carbon atom, and an election in L shell (n = 2) moves down to the vacancy in K shell. What is the wavelength, in the unit of nm, of the photon emitted during this transition? Use for the energy difference between two states in an atom. E0 = 13.6 eV and atomic number of carbon is Z = 12. Use σ = 1 for the transition to K shell and σ = 7.4 for the transition to L shellarrow_forwarda)Suppose a hydrogen molecule in its ground state is dissociated by absorbing a photon of ultraviolet light, causing the two hydrogen atoms to fly apart. What photon energy will give each atom a speed of 19 km/s? The mass of a hydrogen atom is 1.7×10^−27 kg Express your answer to two significant figures and include the appropriate units.arrow_forwardH-alpha line is a red visible spectral line in hydrogen atom with a wavelength of 656.3 nm. Consider five distant stars labeled A, B, C, D, and E. The light from these starts was detected on Earth and, after performing spectral analysis, the following H-alpha wavelengths were measured: A = 665.5 nm, AB = 643.7 nm, Ac = 653.9 nm, Ap = 663 nm, and AE = 661.2 nm. Which star has the slowest speed relative to Earth, in which direction and how fast does it move? ✓ Earth. The slowest star is CV and it moves towards The speed of the slowest star (in km/s), Vslowest Which star has the fastest speed relative to Earth, in which direction and how fast does it move? The fastest star is B ✓ and it moves towards = -1.095E12 X Units km/s The speed of the fastest star (in km/s), Vfastest = -5.73E6 Earth. x Units km/sarrow_forward
- X-rays of wavelength 1.520×10^−2 nm are scattered from a carbon atom. The wavelength shift is measured to be 3.26×10^−4 nm. a) What is the scattering angle? b) How much energy, in , does each photon impart to each electron?arrow_forwardThe Bohr model for the hydrogen atom posits that the atom's electron can only occupy circular orbits, with the circumference of each orbit containing an integral number of de Broglie wavelengths. Suppose that an electron in a particular hydrogen atom is in the first excited orbit, corresponding to n = 2. (a) What is the radius (in nm) of this electron's orbit around the atom's nucleus (a proton)? nm (b) What is the de Broglie wavelength (in nm) for an electron in this orbit? nmarrow_forwardIf the zirconium atom ground state has S= 1 and L = 3, what are the permissible values of J? Write the spectroscopic notation for these possible values of S, L, and J. Which one of these is likely to represent the ground state?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax