Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 69AP
To determine
The frequency of photon required to excite an ESR transition in a field of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A magnetic field is applied to a freely floating uniform iron sphere with radius R = 2.00 mm. The sphere initially had no net magnetic moment, but the field aligns 12% of the magnetic moments of the atoms (that is, 12% of the magnetic moments of the loosely bound electrons in the sphere, with one such electron per atom). The magnetic moment of those aligned electrons is the sphere’s intrinsic magnetic moment .What is the sphere’s resulting angular speed v?
=
=
Imagine that we have a box that emits electrons in a definite but unknown spin state y). If
we send electrons from this box through an SGz device, we find that 20% are determined to
have Sz
+ħ and 80% to have S₂ -ħ. If we send electrons from this box through an
SGx device, we find that 90% are determined to have Sx +ħ and 10% to have Sx
Determine the state vector for electrons emerging from the box. You may assume that the
vector components are real.
-1/ħ.
=
-
The long range interaction between a neutral atom and a charged particle has the form V(r)= 0.5α/(r^4). r is the distance between the atom and the particle. The polarizability for hydrgen is α = 4.5 atomic units. What's α expressed in SI units?
Chapter 42 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For an electron in a hydrogen atom in the n=2 state, compute: (a) the angular momentum; (b) the kinetic energy; (c) the potential energy; and (d) the total energy.arrow_forwardStudent A & B are studying the Zeeman effect. They observe that the energy of an electron in the p-level of an atom is changed in the presence of a magnetic field of magnitude 4.6 T. What is the difference between the largest and smallest possible energies? (bohr magneton = μB = 9.27x10-24 J/T).arrow_forwardThe potential energy of a magnetic moment in an external magnetic field is given by U = -u-B. The magnetic moment associated with the spin of an electron is 5.79 x 10-5 eV/T. Calculate the difference in energy between the two possible orientations of an electron in energy in a magnetic field B = (0.8 T) k. Answer in units of eV. %3D %3D If these electrons are bombarded with photons of energy equal to this energy difference, "spin flip" transitions can be induced. Find the wavelength of the photons needed for such transitions. (This phenomenon is called electron spin resonance.) Answer in units of cm.arrow_forward
- Hydrogen atoms in interstellar gas clouds emit electromagnetic radiation at a wavelength of 21.0 cm when an electron in the ground state of hydrogen switches spin states. Determine the magnitude of the energy difference delta(E) between the two spin states in this transition. delta(E) = ? Jarrow_forwardAssume that the |+z) and |-z) states for an electron in a magnetic field are energy eigen- vectors with energies E and 0, respectively, and assume that the electron's state at t = 0 is |y(0)) = M Find the probability that we will determine this electron's spin to be in the +x direction at time tarrow_forwardIn sodium, one of the two yellow lines has a wavelength of 589.76 nm and is the transition from the 2P₁ state to the 2s, 1/2 1/2 state. If a sodium atom is placed in a magnetic field due to the anomalous Zeeman effect, it can be shown that the energy splitting may be determined by V = μBB extgm,. If the magnitude of the external magnetic field is 2.45 T, determine the difference in wavelength (in m) between the shortest and longest wavelength between these two states. 123 Tutorial marrow_forward
- A hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?arrow_forwardA neutral sodium atom has an ionization potential of 5.1 eV. What is the speed of a free electron that has just barely enough kinetic energy to collisionally ionize a sodium atom in its ground state? What is the speed of a free proton with just enough kinetic energy to collisionally ionize this atom?arrow_forwardIn positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are emitted at nearly 180° to each other. What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron or positron is 9 x 10-31 kg.…arrow_forward
- A hydrogen atom passes through a strong external magnetic field of B= 10 Tesla.A) List the possible quantum states (?, ?, ?l, ?s) for the 3p level.B) Calculate the energies of each of these quantum states.arrow_forwardImagine that we have a box that emits electrons in a definite but unknown spin state |psi>. If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz = +0.5 * hbar and 80% to have Sz = -0.5 * hbar. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx = +0.5 * hbar and 10% to have Sx = -0.5 * hbar. Determine the state vector for electrons emerging from the box (up to an overall sign). You may assume that the vector components are real. (Hint: the answer is [sqrt(1/5), sqrt(4/5)] ).arrow_forwardHydrogen gas can be placed inside a strong magnetic field B=12T. The energy of 1s electron in hydrogen atom is 13.6 eV ( 1eV= 1.6*10 J ). a) What is a wavelength of radiation corresponding to a transition between 2p and 1s levels when magnetic field is zero? b) What is a magnetic moment of the atom with its electron initially in s state and in p state? c) What is the wavelength change for the transition from p- to s- if magnetic field is turned on?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax