![Finite Mathematics (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780321979438/9780321979438_largeCoverImage.gif)
Set up and solve Exercises 23–29 by the simplex method.
Production The Cut-Right Company sells sets of kitchen knives. The Basic Set consists of 2 utility knives and 1 chef’s knife. The Regular Set consists of 2 utility knives, 1 chef’s knife, and I slicer. The Deluxe Set consists of 3 utility knives, 1 chef’s knife, and I slicer. Their profit is $30 on a Basic Set, $40 on a Regular Set, and $60 on a Deluxe Set, The factory has on hand 800 utility knives, 400 chef’s knives, and 200 slicers. (See Exercise 30 in Section 4.1.)
(a) Assuming that all sets will be sold, how many of each type should be made up in order to maximize profit? What is the maximum profit?
(b) A consultant for the Cut-Right Company notes that more profit is made on a Regular Set of knives than on a Basic Set, yet the result from part (a) recommends making up 100 Basic Sets but no Regular Sets. She is puzzled how this can be the best solution. How would you respond?
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 4 Solutions
Finite Mathematics (11th Edition)
Additional Math Textbook Solutions
Pathways To Math Literacy (looseleaf)
College Algebra Essentials (5th Edition)
Precalculus
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Intermediate Algebra (13th Edition)
APPLIED STAT.IN BUS.+ECONOMICS
- A retail chain is interested in determining whether a digital video point-of-purchase (POP) display would stimulate higher sales for a brand advertised compared to the standard cardboard point-of-purchase display. To test this, a one-shot static group design experiment was conducted over a four-week period in 100 different stores. Fifty stores were randomly assigned to the control treatment (standard display) and the other 50 stores were randomly assigned to the experimental treatment (digital display). Compare the sales of the control group (standard POP) to the experimental group (digital POP). What were the average sales for the standard POP display (control group)? What were the sales for the digital display (experimental group)? What is the (mean) difference in sales between the experimental group and control group? List the null hypothesis being tested. Do you reject or retain the null hypothesis based on the results of the independent t-test? Was the difference between the…arrow_forwardCan you evaluate the following summation:∑_{k=1}^{n} (4log(n+k) + 4k)arrow_forwardQuestion 4 An article in Quality Progress (May 2011, pp. 42-48) describes the use of factorial experiments to improve a silver powder production process. This product is used in conductive pastes to manufacture a wide variety of products ranging from silicon wafers to elastic membrane switches. Powder density (g/cm²) and surface area (cm/g) are the two critical characteristics of this product. The experiments involved three factors: reaction temperature, ammonium percentage, stirring rate. Each of these factors had two levels, and the design was replicated twice. The design is shown in Table 3. A222222222222233 Stir Rate (RPM) Ammonium (%) Table 3: Silver Powder Experiment from Exercise 13.23 Temperature (°C) Density Surface Area 100 8 14.68 0.40 100 8 15.18 0.43 30 100 8 15.12 0.42 30 100 17.48 0.41 150 7.54 0.69 150 8 6.66 0.67 30 150 8 12.46 0.52 30 150 8 12.62 0.36 100 40 10.95 0.58 100 40 17.68 0.43 30 100 40 12.65 0.57 30 100 40 15.96 0.54 150 40 8.03 0.68 150 40 8.84 0.75 30 150…arrow_forward
- Given sets X and Y and Z, can you prove that (X-(Y u Z)) u (Y-(X u Z)) is a subset of (X u Y) - (X intersection Y)arrow_forward4. A car travels in a straight line for one hour. Its velocity, v, in miles per hour at six minute intervals is shown in the table. For each problem, approximate the distance the car traveled (in miles) using the given method, on the provided interval, and with the given number of rectangles or trapezoids, n. Time (min) 0 6 12 18|24|30|36|42|48|54|60 Speed (mph) 0 10 20 40 60 50 40 30 40 40 65 a.) Left Rectangles, [0, 30] n=5 b.) Right Rectangles, [24, 42] n=3 c.) Midpoint Rectangles, [24, 60] n=3 d.) Trapezoids, [0, 24] n=4arrow_forwardGiven the functions A and B, can you prove that if B ◦ A is bijective, then A is injective and B is surjectivearrow_forward
- - + ++ Table 2: Crack Experiment for Exercise 2 A B C D Treatment Combination (1) Replicate I II 7.037 6.376 14.707 15.219 |++++ 1 བྱ॰༤༠སྦྱོ སྦྱོཋཏྟཱུ a b ab 11.635 12.089 17.273 17.815 с ас 10.403 10.151 4.368 4.098 bc abc 9.360 9.253 13.440 12.923 d 8.561 8.951 ad 16.867 17.052 bd 13.876 13.658 abd 19.824 19.639 cd 11.846 12.337 acd 6.125 5.904 bcd 11.190 10.935 abcd 15.653 15.053 Question 3 Continuation of Exercise 2. One of the variables in the experiment described in Exercise 2, heat treatment method (C), is a categorical variable. Assume that the remaining factors are continuous. (a) Write two regression models for predicting crack length, one for each level of the heat treatment method variable. What differences, if any, do you notice in these two equations? (b) Generate appropriate response surface contour plots for the two regression models in part (a). (c) What set of conditions would you recommend for the factors A, B, and D if you use heat treatment method C = +? (d) Repeat…arrow_forwardTerry has a square plot of land measuring 500 meters by 500 meters. She divided the land into 25 100-m by 100-m plots and created three raster maps showing the type of mineral, fruit tree, and energy available on each plot. Use the maps below to shade the blank maps according to each problem.arrow_forwardThe bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N. F1 B a=0.18 m C A 0.4 m -0.4 m- 0.24 m Determine the reaction at C. The reaction at C N Z F2 Darrow_forward
- Question 2 A nickel-titanium alloy is used to make components for jet turbine aircraft engines. Cracking is a potentially serious problem in the final part because it can lead to nonrecoverable failure. A test is run at the parts producer to determine the effect of four factors on cracks. The four factors are: pouring temperature (A), titanium content (B), heat treatment method (C), amount of grain refiner used (D). Two replicates of a 24 design are run, and the length of crack (in mm x10-2) induced in a sample coupon subjected to a standard test is measured. The data are shown in Table 2. 1 (a) Estimate the factor effects. Which factor effects appear to be large? (b) Conduct an analysis of variance. Do any of the factors affect cracking? Use a = 0.05. (c) Write down a regression model that can be used to predict crack length as a function of the significant main effects and interactions you have identified in part (b). (d) Analyze the residuals from this experiment. (e) Is there an…arrow_forwardShow the stepsarrow_forwardThe correct answer is C,i know that we need to use stokes theorem and parametrize the equations then write the equation F with respect to the curve but i cant seem to find a way to do it, the integral should be from 0 to 2pi but i might be wrongcould you show me the steps to get to 18piarrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259676512/9781259676512_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134392790/9780134392790_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168024/9781938168024_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134683713/9780134683713_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337694193/9781337694193_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259985607/9781259985607_smallCoverImage.gif)