
Finite Mathematics (11th Edition)
11th Edition
ISBN: 9780321979438
Author: Margaret L. Lial, Raymond N. Greenwell, Nathan P. Ritchey
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.3, Problem 18E
To determine
To explain: Why the objective function has no minimum.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
8.1.8 A civil engineer is analyzing the compressives trength of concrete. Compressive strength is normally distributed with σ2 = 1000(psi)2. A random sample of 12 specimens has a mean compressive strength ofx = 3250 psi.
a. Construct a 95% two-sided confidence interval on mean
compressive strength.
b. Construct a 99% two-sided confidence interval on mean
compressive strength. Compare the width of this confidence
interval with the width of the one found in part (a).
8.1.9Suppose that in Exercise 8.1.8 it is desired to estimate
the compressive strength with an error that is less than 15 psi at
99% confidence. What sample size is required?
8.1.12 Ishikawa et al. [“Evaluation of Adhesiveness of Acinetobacter sp. Tol 5 to Abiotic Surfaces,” Journal of Bioscience and
Bioengineering (Vol. 113(6), pp. 719–725)] studied the adhesion
of various biofilms to solid surfaces for possible use in environmental technologies. Adhesion assay is conducted by measuring
absorbance at A590. Suppose that for the bacterial strain Acinetobacter, five measurements gave readings of 2.69, 5.76, 2.67, 1.62,
and 4.12 dyne-cm2. Assume that the standard deviation is known
to be 0.66 dyne-cm2.
a. Find a 95% confidence interval for the mean adhesion.
b. If the scientists want the confidence interval to be no
wider than 0.55 dyne-cm2, how many observations should
they take?
Answer questions 8.2.1 and 8.2.2 respectively
Chapter 4 Solutions
Finite Mathematics (11th Edition)
Ch. 4.1 - Convert each inequality into an equation by adding...Ch. 4.1 - Prob. 2ECh. 4.1 - Convert each inequality into an equation by adding...Ch. 4.1 - Prob. 4ECh. 4.1 - For Exercises 5-8. (a) determine the number of...Ch. 4.1 - Prob. 6ECh. 4.1 - For Exercises 5-8, (a) determine the number of...Ch. 4.1 - For Exercises 5-8, (a) determine the number of...Ch. 4.1 -
Introduce slack variables as necessary, then...Ch. 4.1 - Introduce slack variables as necessary, then write...
Ch. 4.1 - Introduce slack variables as necessary, then write...Ch. 4.1 - Introduce slack variables as necessary, then write...Ch. 4.1 - Prob. 13ECh. 4.1 - Introduce slack variables as necessary, then write...Ch. 4.1 -
Write the solutions that can be read from each...Ch. 4.1 - Write the solutions that can be read from each...Ch. 4.1 - Prob. 17ECh. 4.1 - Prob. 18ECh. 4.1 - Pivot once as indicated in each simplex tableau....Ch. 4.1 - Pivot once as indicated in each simplex tableau....Ch. 4.1 - Prob. 21ECh. 4.1 - Prob. 22ECh. 4.1 - Prob. 23ECh. 4.1 - Prob. 24ECh. 4.1 - Explain the purpose of a slack variable.Ch. 4.1 - Prob. 26ECh. 4.1 - Prob. 27ECh. 4.1 - Set up Exercises 2731 for solution by the simplex...Ch. 4.1 - Set up Exercises 2731 for solution by the simplex...Ch. 4.1 - Set up Exercises 2731 for solution by the simplex...Ch. 4.1 - Set up Exercises 27for solution by the simplex...Ch. 4.2 -
In Exercises 1-6, the initial tableau of a linear...Ch. 4.2 -
In Exercises 1-6, the initial tableau of a linear...Ch. 4.2 - In Exercises 1-6, the initial tableau of a linear...Ch. 4.2 - In Exercises 1-6, the initial tableau of a linear...Ch. 4.2 -
In Exercises 1-6, the initial tableau of a linear...Ch. 4.2 - In Exercises 1- the initial tableau of a linear...Ch. 4.2 -
Use the simplex method to solve each linear...Ch. 4.2 - Prob. 8ECh. 4.2 - Prob. 9ECh. 4.2 - Use the simplex method to solve each linear...Ch. 4.2 - Prob. 11ECh. 4.2 - Prob. 12ECh. 4.2 -
Use the simplex method to solve each linear...Ch. 4.2 - Prob. 14ECh. 4.2 - Use the simplex method to solve each linear...Ch. 4.2 - Prob. 16ECh. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - The simplex algorithm still works if an indicator...Ch. 4.2 -
20. What goes wrong if a quotient other than...Ch. 4.2 - Prob. 21ECh. 4.2 - Prob. 22ECh. 4.2 - Prob. 23ECh. 4.2 -
Set up and solve Exercises 23–29 by the...Ch. 4.2 -
Set up and solve Exercises 23–29 by the simplex...Ch. 4.2 - Set up and solve Exercises 23–29 by the simplex...Ch. 4.2 - Set up and solve Exercises 2329 by the simplex...Ch. 4.2 - Set up and solve Exercises 2329 by the simplex...Ch. 4.2 - Prob. 29ECh. 4.2 - Profit A manufacturer makes two products, toy...Ch. 4.2 - Exercises and 32 come from past CPA examinations....Ch. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - Prob. 34ECh. 4.2 - Prob. 35ECh. 4.2 - Prob. 36ECh. 4.2 -
37. Resource Management The average weights of...Ch. 4.2 - Prob. 38ECh. 4.2 - Prob. 39ECh. 4.2 - Prob. 40ECh. 4.3 -
Find the transpose of each matrix.
1.
Ch. 4.3 - Prob. 2ECh. 4.3 - Prob. 3ECh. 4.3 - Find the transpose of each matrix. [...Ch. 4.3 -
State the dual problem for each linear...Ch. 4.3 - Prob. 6ECh. 4.3 -
State the dual problem for each linear...Ch. 4.3 - Prob. 8ECh. 4.3 - Prob. 9ECh. 4.3 -
Use the simples method to solve.
10. Find y1 ≥...Ch. 4.3 -
Use the simplex method to solve.
11. Find y1 ≥...Ch. 4.3 -
Use the simplex method to solve.
12. Minimize w...Ch. 4.3 - Prob. 13ECh. 4.3 -
Use the simplex method to solve.
14. Minimize w =...Ch. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 -
19. Production Costs A brewery produces regular...Ch. 4.3 - Supply Costs The chemistry department at a local...Ch. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 -
24. Animal Food An animal food must provide at...Ch. 4.3 - Feed Costs Refer to Example 5 in this section on...Ch. 4.3 - Prob. 26ECh. 4.3 - Calorie Expenditure Maureen Rachford wants to...Ch. 4.3 -
28. Health Care Greg Conover takes vitamin...Ch. 4.3 - 29. Blending Nutrients A biologist must make a...Ch. 4.4 - Prob. 1ECh. 4.4 - Prob. 2ECh. 4.4 - Prob. 3ECh. 4.4 - Prob. 4ECh. 4.4 -
Convert each problem into a maximization...Ch. 4.4 - Prob. 6ECh. 4.4 - Prob. 7ECh. 4.4 - Prob. 8ECh. 4.4 - Prob. 9ECh. 4.4 - Prob. 10ECh. 4.4 - Use the simplex method to solve. Find x1 0, x2 0...Ch. 4.4 - Prob. 12ECh. 4.4 - Prob. 13ECh. 4.4 - Prob. 14ECh. 4.4 - Prob. 15ECh. 4.4 - Prob. 16ECh. 4.4 - Prob. 17ECh. 4.4 - Prob. 18ECh. 4.4 - Solve using artificial variables. Maximize w =...Ch. 4.4 - Prob. 20ECh. 4.4 - Prob. 21ECh. 4.4 - Prob. 22ECh. 4.4 - Prob. 23ECh. 4.4 - Prob. 24ECh. 4.4 - Prob. 25ECh. 4.4 - Prob. 26ECh. 4.4 - Prob. 27ECh. 4.4 - Blending Seed Topgrade Turf lawn seed mixture...Ch. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - 31. Blending Chemicals Natural Brand plant food is...Ch. 4.4 - Prob. 32ECh. 4.4 -
33. Calorie Expenditure Joe Vetere’s exercise...Ch. 4 - Suppose you plan to build a raised flower bed...Ch. 4 - For the list of standard paper roll widths given...Ch. 4 - Prob. 3EACh. 4 - For the computer solution of the cutting problem,...Ch. 4 - Prob. 5EACh. 4 - Prob. 6EACh. 4 - Suppose that of the original 33 cutting patterns,...Ch. 4 - Prob. 8EACh. 4 - Compare your two answers from Exercise 8 with each...Ch. 4 - Prob. 10EACh. 4 -
Determine whether each of the following...Ch. 4 - Prob. 2RECh. 4 -
Determine whether each of the following...Ch. 4 - Prob. 4RECh. 4 -
Determine whether each of the following...Ch. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Determine whether each of the following statements...Ch. 4 - Determine whether each of the following statements...Ch. 4 - Prob. 12RECh. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 -
Determine whether each of the following...Ch. 4 -
For each problem. (a) add slack variables or...Ch. 4 - For each problem, (a) add slack variables or...Ch. 4 -
For each problem, (a) add slack variables or...Ch. 4 - For each problem, (a) add slack variables or...Ch. 4 -
Use the simplex method to solve each maximization...Ch. 4 - Use the simplex method to solve each maximization...Ch. 4 -
Use the simplex method to solve each maximization...Ch. 4 - Use the simplex method to solve each maximization...Ch. 4 - Convert each problem into a maximization problem...Ch. 4 - Convert each problem into a maximization problem...Ch. 4 - Prob. 27RECh. 4 - Prob. 28RECh. 4 - Prob. 29RECh. 4 - Prob. 30RECh. 4 - Prob. 31RECh. 4 - Prob. 32RECh. 4 - Prob. 33RECh. 4 - Prob. 34RECh. 4 - Prob. 35RECh. 4 -
36. In Chapter 2 we wrote a system of It near...Ch. 4 - Prob. 37RECh. 4 - Prob. 38RECh. 4 - Prob. 39RECh. 4 - Prob. 40RECh. 4 - Prob. 41RECh. 4 - Prob. 42RECh. 4 - Prob. 43RECh. 4 - Prob. 44RECh. 4 - Prob. 45RECh. 4 - Prob. 46RECh. 4 - Prob. 47RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 8.2.3 A research engineer for a tire manufacturer is investigating tire life for a new rubber compound and has built 16 tires and tested them to end-of-life in a road test. The sample mean and standard deviation are 60,139.7 and 3645.94 kilometers. Find a 95% confidence interval on mean tire life. 8.2.4 Determine the t-percentile that is required to construct each of the following one-sided confidence intervals: a. Confidence level = 95%, degrees of freedom = 14 b. Confidence level = 99%, degrees of freedom = 19 c. Confidence level = 99.9%, degrees of freedom = 24arrow_forward8.1.6The yield of a chemical process is being studied. From previous experience, yield is known to be normally distributed and σ = 3. The past 5 days of plant operation have resulted in the following percent yields: 91.6, 88.75, 90.8, 89.95, and 91.3. Find a 95% two-sided confidence interval on the true mean yield. 8.1.7 .A manufacturer produces piston rings for an automobile engine. It is known that ring diameter is normally distributed with σ = 0.001 millimeters. A random sample of 15 rings has a mean diameter of x = 74.036 millimeters. a. Construct a 99% two-sided confidence interval on the mean piston ring diameter. b. Construct a 99% lower-confidence bound on the mean piston ring diameter. Compare the lower bound of this confi- dence interval with the one in part (a).arrow_forward8.1.2 .Consider the one-sided confidence interval expressions for a mean of a normal population. a. What value of zα would result in a 90% CI? b. What value of zα would result in a 95% CI? c. What value of zα would result in a 99% CI? 8.1.3 A random sample has been taken from a normal distribution and the following confidence intervals constructed using the same data: (38.02, 61.98) and (39.95, 60.05) a. What is the value of the sample mean? b. One of these intervals is a 95% CI and the other is a 90% CI. Which one is the 95% CI and why?arrow_forward
- 8.1.4 . A confidence interval estimate is desired for the gain in a circuit on a semiconductor device. Assume that gain is normally distributed with standard deviation σ = 20. a. How large must n be if the length of the 95% CI is to be 40? b. How large must n be if the length of the 99% CI is to be 40? 8.1.5 Suppose that n = 100 random samples of water from a freshwater lake were taken and the calcium concentration (milligrams per liter) measured. A 95% CI on the mean calcium concentration is 0.49 g μ g 0.82. a. Would a 99% CI calculated from the same sample data be longer or shorter? b. Consider the following statement: There is a 95% chance that μ is between 0.49 and 0.82. Is this statement correct? Explain your answer. c. Consider the following statement: If n = 100 random samples of water from the lake were taken and the 95% CI on μ computed, and this process were repeated 1000 times, 950 of the CIs would contain the true value of μ. Is this statement correct? Explain your answerarrow_forward2 6. Modelling. Suppose that we have two tanks (A and B) between which a mixture of brine flows. Tank A contains 200 liters of water in which 50 kilograms of salt has been dissolved and Tank B contains 100 liters of pure water. Water containing 1kg of salt per liter is pumped into Tank A at the rate of 5 liters per minute. Brine mixture is pumped into Tank A from Tank B at the rate of 3 liters per minute and brine mixture is pumped from Tank A into Tank B at the rate of 8 liters per minute. Brine is drained from Tank B at a rate of 5 liters per minute. (a) Draw and carefully label a picture of the situation, including both tanks and the flow of brine between them. JankA 1ks of Salt Slits Pump EL Brine mit tark A from tank 13 Tank 13 k 3L zooliters of Ico liters of water with pure water. Saky salt → 777 disslore inside Brine mix is pumped from tank A to B of 82 Brine drainen min by Gf salt (b) Assume all brine mixtures are well-stirred. If we let t be the time in minutes, let x(t) 1ks…arrow_forward5. The graph of ƒ is given below. Sketch a graph of f'. 6. The graph of ƒ is given below. Sketch a graph of f'. 0 x 7. The graph of ƒ is given below. List the x-values where f is not differentiable. 0 A 2 4arrow_forward
- 2. DRAW a picture, label using variables to represent each component, set up an equation to relate the variables, then differentiate the equation to solve the problem below. The top of a ladder slides down a vertical wall at a rate of 0.15 m/s. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m/s. How long is the ladder?arrow_forwardPlease answer all questions and show full credit pleasearrow_forwardplease solve with full steps pleasearrow_forward
- 4. Identify at least two mistakes in Francisco's work. Correct the mistakes and complete the problem by using the second derivative test. 2f 2X 2. Find the relative maximum and relative minimum points of f(x) = 2x3 + 3x² - 3, using the First Derivative Test or the Second Derivative Test. bx+ bx 6x +6x=0 12x- af 24 = 0 x=0 108 -2 5. Identify at least three mistakes in Francisco's work. Then sketch the graph of the function and label the local max and local min. 1. Find the equation of the tangent line to the curve y=x-2x3+x-2 at the point (1.-2). Sketch the araph of y=x42x3+x-2 and the tangent line at (1,-2) y' = 4x-6x y' (1) = 4(1) - 667 - 2 = 4(-2)4127-6(-2) 5-8-19-20 =arrow_forward۳/۱ R2X2 2) slots per pole per phase = 3/31 B=18060 msl Ka, Sin (1) Kdl Isin ( sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 120*50 5) Synchronous speed, 120 x 50 S1000-950 1000 Copper losses 5kw 50105 Rotor input 5 0.05 loo kw 6) 1 1000rpm اذا ميريد شرح الكتب فقط Look = 7) rotov DC ined sove in peaper PU + 96er Which of the following is converge, and which diverge? Give reasons for your answers with details. When your answer then determine the convergence sum if possible. 3" 6" Σ=1 (2-1) π X9arrow_forward1 R2 X2 2) slots per pole per phase = 3/31 B = 180 - 60 msl Kd Kol, Sin (no) Isin (6) 2 sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed; 120*50 Looo rem G S = 1000-950 solos 1000 Copper losses: 5kw Rotor input: 5 loo kw 0.05 1 اذا میرید شرح الكتب فقط look 7) rotor DC ined sove in pea PU+96er Q2// Find the volume of the solid bounded above by the cynnuer 2=6-x², on the sides by the cylinder x² + y² = 9, and below by the xy-plane. Q041 Convert 2 2x-2 Lake Gex 35 w2x-xབོ ,4-ཙཱཔ-y √4-x²-yz 21xy²dzdydx to(a) cylindrical coordinates, (b) Spherical coordinates. 201 25arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY