As a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 61.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.00 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine (a) the salmon’s acceleration and (b) the magnitude of the force F during this interval.
As a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 61.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.00 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine (a) the salmon’s acceleration and (b) the magnitude of the force F during this interval.
As a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 61.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.00 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine (a) the salmon’s acceleration and (b) the magnitude of the force F during this interval.
as a fish jump vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. a force chinook salmon has a length of 1.50 m and a mass of 48.5 kg. if the fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.80 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following.
a. the salmon's acceleration
b. the magnitude of the force F during this interval
During an Olympic 100-m sprint race, Usain Bolt, the world record holder in that race, quickly accelerates to his top speed of 12.4 m/s. Analysis of his technique has shown that each of his feet make contact with
the ground for 0.0800 s, exerting a force of magnitude 2.80 x 103 N during this contact. This allows the 94.0 kg Bolt to leap forward and remain airborne for 0.120 s until the next foot touches the ground.
(Ignore air resistance.)
(a) What are the magnitudes of the horizontal and vertical components of the force (in N) Bolt's feet exert on the ground? (Round your answers to at least three significant figures.)
horizontal
N
vertical
N
(b) Assuming that the sprinter accelerates at a constant rate while his feet are in contact with the ground and does not slow down when he is airborne, by what amount does Bolt's horizontal speed (in m/s)
increase with each step? (Round your answer to at least three significant figures.)
m/s
(c) Assuming that the sprinter's speed increases at a…
A basketball player of mass m=88.4 kg jumps straight up for a ball. To do this, he lowers his body d1=0.44 m, then he accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a speed sufficient to carry him d2=0.56 m above the floor. Write an expression for the speed v with which the basketball player leaves the floor.
Write an expression for the speed v with wiich the basketball player leaves the floor.
Write an expression for the acceleration, a, of the basketball player during the leg-straightening.
Write an expression for the force upward force, FN, exerted on the basketball player by the floor during the leg straightening.
What is the magnitude, in newtons, of the force FN while the player is straightening his legs?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.