A fisherman poles a boat as he searches for his next catch. He pushes parallel to the length of the light pole, exerting a force of 240 N on the bottom of a shallow lake. The pole lies in the vertical plane containing the boat’s keel. At one moment, the pole makes an angle of 35.0° with the vertical and the water exerts a horizontal drag force of 47.5 N on the boat, opposite to its forward velocity of magnitude 0.857 m/s. The mass of the boat including its cargo and the worker is 370 kg. (a) The water exerts a buoyant force vertically upward on the boat. Find the magnitude of this force. (b) Assume the forces are constant user a short interval of time. Find the velocity of the boat 0.450 s after the moment described, (c) If the angle of the pole with respect to the vertical increased but the exerted force against the bottom remained the same, what would happen to buoyant forte and the acceleration of the boat?
A fisherman poles a boat as he searches for his next catch. He pushes parallel to the length of the light pole, exerting a force of 240 N on the bottom of a shallow lake. The pole lies in the vertical plane containing the boat’s keel. At one moment, the pole makes an angle of 35.0° with the vertical and the water exerts a horizontal drag force of 47.5 N on the boat, opposite to its forward velocity of magnitude 0.857 m/s. The mass of the boat including its cargo and the worker is 370 kg. (a) The water exerts a buoyant force vertically upward on the boat. Find the magnitude of this force. (b) Assume the forces are constant user a short interval of time. Find the velocity of the boat 0.450 s after the moment described, (c) If the angle of the pole with respect to the vertical increased but the exerted force against the bottom remained the same, what would happen to buoyant forte and the acceleration of the boat?
Solution Summary: The author explains how to determine the magnitude of buoyant force on the boat.
A fisherman poles a boat as he searches for his next catch. He pushes parallel to the length of the light pole, exerting a force of 240 N on the bottom of a shallow lake. The pole lies in the vertical plane containing the boat’s keel. At one moment, the pole makes an angle of 35.0° with the vertical and the water exerts a horizontal drag force of 47.5 N on the boat, opposite to its forward velocity of magnitude 0.857 m/s. The mass of the boat including its cargo and the worker is 370 kg. (a) The water exerts a buoyant force vertically upward on the boat. Find the magnitude of this force. (b) Assume the forces are constant user a short interval of time. Find the velocity of the boat 0.450 s after the moment described, (c) If the angle of the pole with respect to the vertical increased but the exerted force against the bottom remained the same, what would happen to buoyant forte and the acceleration of the boat?
2. Consider a 2.4 m long propeller that
operated at a constant 350 rpm. Find the
acceleration of a particle at the tip of the
propeller.
2. A football is kicked at an angle 37.0° above
the horizontal with a velocity of 20.0 m/s, as
Calculate (a) the maximum height, (b) the
time of travel before the football hits the
ground, and (c) how far away it hits the
ground. Assume the ball leaves the foot at
ground level, and ignore air resistance, wind,
and rotation of the ball.
Please don't use Chatgpt will upvote and give handwritten solution
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.