EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 76P
(a)
To determine
The mass of the counterweight that must be used.
(b)
To determine
The tension in the string.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A basketball player jumps straight up for a ball. To do this, he lowers his body 0.300 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.900 m above the floor. (a) Calculate his velocity when he leaves the floor. (b) Calculate his acceleration while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.300 m.
(c) Calculate the force he exerts on the floor to do this, given that his mass is 110 kg.
A box has a mass of 67 kg, a force of 91 N is applied to it at an angle of 45º, an object moves on a surface of 29 m with a coefficient of kinetic friction = 0.04 and where its initial velocity is equal to 13 meters/sec. in said path: Determine the magnitude of the normal (n).
Consider an object of mass m = 2kg moving up a ramp with an initial speed (vi) of 10m/s. Suppose that the ramp make an angle θ = 30◦ relative to the ground. Given that the coefficient of static friction and the coefficient of kinetic friction between the surfaces of the ramp and the object are μs = 0.6 and μk = 0.5 respectively.
(a) Find the acceleration of the object as it slides up.(b) How far does the object move along the ramp?(c) Does the object move down the ramp after it reaches the maximum height (Justify your answer with calculation)?
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10P
Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If block A is intended to move vertically at a constant rate of 3.96m/s, determine the rate (m/s) at which the rope on point B must be pulled downwards. Round off only on the final answer expressed in 3 decimal places. Instead of units, indicate the direction of movement of block A: Use U if upward and D if downward.arrow_forwardThe crate shown in Fig. 4-60 lies on a plane tilted at an angle (theta)= 25.0 degrees to the horizontal, with (mu-of-k)= 0.19. (a) Determine the acceleration of the crate as it slides down the plane. (b) If the crate starts from rest 8.15 m up along the plane from its base, what will be the crate’s speed when it reaches the bottom of the incline?arrow_forwardAn elevator, which weighs 8 tons with its load, is descending with a speed of 900 ft/min. Ifthe load on the cables must not exceed 14 tons, what is the shortest distance in which the elevator can be stopped?arrow_forward
- (a) Suppose the coefficient of kinetic friction between mA and the plane in Fig. 3 is µk=0.15 and that mA = mB = 2.7 kg. As moves down, determine the magnitude of the acceleration of mA and mB , given θ = 34°.(b) What smallest value of µk will keep the system from accelerating?arrow_forwardTwo blocks A and B of the same mass 0.57 kg are released from rest on a 27° incline when they are S = 18.8 m apart, as shown. The coefficient of friction under the upper block A is 0.22, and that under the lower block B is 0.41. Compute the elapsed time (in seconds) until the blocks touch each other. Round off only on the final answer expressed in 3 decimal places.arrow_forwardA box of mass 3.6 kg is given an initial speed of vo = 7.1 m/s along a ramp as indicated in the figure (0 = 65.5°). m If the coefficient of kinetic friction between the box and the ramp is u = 0.72, find the magnitude of the acceleration of the box. (in m/s^2)arrow_forward
- Two blocks A and B are released from rest on a 30° incline when they are 13 meters apart. The coefficient of friction under the upper block A is 0.20 and that under the lower block B is 0.40. Compute the elapsed time in seconds until the blocks touch.arrow_forwardA box with a mass of 5 kg accelerates its speed in a straight line, increasing it from 5 m/s to 8 m/s, due to the application of an external force acting for a duration of 2.0 s. Calculate the average strength of this force.arrow_forwardA 50 kg skier has just started the descent of a slope of 30° in relation to the horizontal. If there is no friction, find the acceleration of the skier.arrow_forward
- An elevator in a tall building is allowed to reach a maximum speed of 3.6 m/s going down. What must the tension be in the cable to stop this elevator over a distance of 2.8 m if the elevator has a mass of 1450 kg including occupants?arrow_forwardCalculate the Tensions, and Accelerations of blocks 1 and 2 if m1= 5 kg and m2 = 6 kgarrow_forwardThe block shown in Fig. 4-59 has mass m=7.0 kg and lies on a fixed smooth frictionless plane tilted at an angle (theta)= 22.0 degrees to the horizontal. (a) Determine the acceleration of the block a step it slides down the plane. (b) If the block starts from rest 12.0m up the plane from its base, what will be the block’s speed when it reaches the bottom of the incline?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY