EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 41P

(a)

To determine

The acceleration of the object.

(a)

Expert Solution
Check Mark

Answer to Problem 41P

Theacceleration of the object is (1.5m/s2)i^(3.5m/s2)j^ .

Explanation of Solution

Given:

The mass of the object is m=4.0kg .

The value of the force F¯1=(2.0N)i^+(30N)j^ .

The value of the force F¯2=(4.0N)i^(11N)j^ .

Formula used:

The expression for the effective acceleration of the object is given by,

  a=F¯1+F¯2m

Calculation:

The effective acceleration of the object is calculated as,

  a= F ¯1+ F ¯2m=( 2.0N)i^+( 30N)j^+( 4.0N)i^( 11N)j^4kg=(1.5m/ s 2)i^(3.5m/ s 2)j^

Conclusion:

Therefore, the acceleration of the object is (1.5m/s2)i^(3.5m/s2)j^ .

(b)

To determine

The velocity of the object at time t=3.0s .

(b)

Expert Solution
Check Mark

Answer to Problem 41P

Thevelocity of the object at time t=3.0s is (4.5m/s)i^(10.5m/s2)j^ .

Explanation of Solution

Given:

Time, t=3.0s

Formula used:

The expression for velocity of the object is given by,

  v=adt

Calculation:

The velocity of the object is calculated as,

  v= a dt={ ( 1.5m/ s 2 ) i ^ ( 3.5m/ s 2 ) j ^ }dt=(1.5m/ s 2)ti^(3.5m/ s 2)tj^+C1

The velocity of the object for time t=0 is calculated as,

  v=(1.5m/ s 2)ti^(3.5m/ s 2)tj^+C1(0)=(1.5m/ s 2)((0))i^(3.5m/ s 2)(0)j^+C1C1=0

The evaluated value of velocity of the object for time t=0 is calculated as,

  v=(1.5m/s2)ti^(3.5m/s2)tj^

The velocity of the object for time t=3s is calculated as,

  v=(1.5m/ s 2)ti^(3.5m/ s 2)tj^=(1.5m/ s 2)(3s)i^(3.5m/ s 2)(3s)j^=(4.5m/s)i^(10.5m/ s 2)j^

Conclusion:

Therefore, the velocity of the object at time t=3.0s is (4.5m/s)i^(10.5m/s2)j^ .

(c)

To determine

The position of the object at time t=3s .

(c)

Expert Solution
Check Mark

Answer to Problem 41P

Theposition of the object is (6.75m)i^(15.75m)j^ .

Explanation of Solution

Given:

Time, t=3.0s

Formula used:

The expression for position of the object is given by,

  r=vdt

Calculation:

The expression for the position of the object is evaluated as,

  r= v dt={ ( 4.5m/s ) i ^ ( 10.5m/ s 2 ) j ^ }dt=(1.5m/ s 2)t22i^(3.5m/ s 2)t22j^

The position of the object for time t=3.0s is given by,

  r=(1.5m/ s 2) ( 3.0s )22i^(3.5m/ s 2) ( 3.0s )22j^=(6.75m)i^(15.75m)j^

Conclusion:

Therefore, the position of the object is (6.75m)i^(15.75m)j^ .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Cam mechanisms are used in many machines. For example, cams open and close the valves in your car engine to admit gasoline vapor to each cylinder and to allow the escape of exhaust. The principle is illustrated in the figure below, showing a follower rod (also called a pushrod) of mass m resting on a wedge of mass M. The sliding wedge duplicates the function of a rotating eccentric disk on a camshaft in your car. Assume that there is no friction between the wedge and the base, between the pushrod and the wedge, or between the rod and the guide through which it slides. When the wedge is pushed to the left by the force F, the rod moves upward and does something such as opening a valve. By varying the shape of the wedge, the motion of the follower rod could be made quite complex, but assume that the wedge makes a constant angle of 0 = 15.0°. Suppose you want the wedge and the rod to start from rest and move with constant acceleration, with the rod moving upward 1.00 mm in 8.00 ms. Take m…
No chatgpt pls will upvote
No chatgpt pls will upvote

Chapter 4 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY