EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 29P
To determine
The average force and its direction exerted on the driver by the safety harness.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) A bartender slides a mug of beer with mass 0.2 kg down a smooth, level bar. The mug leaves
the bartender's hand at an initial velocity of 2.8m/s. As the mug slides, it slows down due
to the effect of friction between the mug and bar. The mug just comes to rest in the
customer’s hand 1.0 m away from the bartender. Calculate the magnitude and direction of
the frictional force acting on the mug
Review Conceptual Example 16 as background for this problem. The water skier there has a mass of 67.0 kg. Find the magnitude of the
net force acting on the skier when (a) she is accelerated from rest to a speed of 14.0 m/s in 9.40 s and (b) she lets go of the tow rope and
glides to a halt in 18.0 s.
(a) Number
(b) Number
i
i
Units
Units
A flatbed truck is traveling at a constant speed of 60kph up the 15% grade when 100 kg crate which it carries is given a shove which imparts to an initial relative velocity x= 3m/s towards the rear of the truck. If the crate slides a distance x=2m measured on the truck bed before coming to rest on the bed,
a)Compute the acceleration of the block.
b)Compute the coefficient of kinetic friction between the crate and the truck.
c)Compute the time it takes for the crate to move a distance of 2 m.
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10P
Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98P
Knowledge Booster
Similar questions
- An automobile driver traveling down an 8% grade slams on his brakes and skids 30 m before hitting a parked car. A lawyer hires an expert who measures the coefficient of kinetic friction between the tires and road to be k = 0.45. Is the lawyer correct to accuse the driver of exceeding the 25-MPH speed limit? Explain.arrow_forwardYou have been called to testify as an expert witness in a trial involving a head-on collision. Car A weighs 1515 lb and was traveling eastward. Car B weighs 1125 lb and was traveling westward at 43.0 mph. The cars locked bumpers and slid castward with their wheels locked for 18.5 ft before stopping. You have measured the coefficient of kinetic friction between the tires and the pavement to be 0.750. What speed (in miles per hour) was car A traveling just before the collision? (This problem uses English units because they would be used in a U.S. legal proceeding.) UF mpharrow_forwardAs a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 61.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.00 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine (a) the salmon’s acceleration and (b) the magnitude of the force F during this interval.arrow_forward
- As a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 45.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.40 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. (a) the salmon's acceleration m/s² upward (b) the magnitude of the force F during this intervalarrow_forwardA flatbed truck is travelling at a constant speed of 60kph up the 15% grade when 100 kg crate which it carries is given a shove which imparts to an initial relative velocity x= 3m/s towards the rear of the truck. If the crate slides a distance x=2m measured on the truck bed before coming to rest on the bed, a) Compute the acceleration of the block. b) Compute the coefficient of kinetic friction between the crate and the truck. c) Compute the time it takes fo the crate to move a distance of 2 m.arrow_forwardA) B)arrow_forward
- The force F, acting in a constant direction on the 17-kg block, has a magnitude which varies with the position s of the block. When s = 0 the block is moving to the right at v = 6 m/s. The coefficient of kinetic friction between the block and surface is μk = 0.3 a) Determine how far the block must slide before its velocity becomes 15 m/s.arrow_forwardYou have been called to testify as an expert witness in a trial involving a head-on collision. Car A weighs 1515 lb and was traveling eastward. Car B weighs 1125 lb and was traveling westward at 45.0 mph. The cars locked bumpers and slid eastward with their wheels locked for 20.5 ft before stopping. You have measured the coefficient of kinetic friction between the tires and the pavement to be 0.750. How fast (in miles per hour) was car A traveling just before the collision? (This problem uses English units because they would be used in a U.S. legal proceeding.) speed of car A: mpharrow_forward7. ssm mmh A 1580-kg car is traveling with a speed of 15.0 m/s. What is the magnitude of the horizontal net force that is required to bring the car to a halt in a distance of 50.0 m? This icon represents a biomedical application.arrow_forward
- As a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by a tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 48.5 kg. if this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.80 m/s after two-thirds of its length has left the surface. what is the magnitude of the force F during the intervalarrow_forwardas a fish jump vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. a force chinook salmon has a length of 1.50 m and a mass of 48.5 kg. if the fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 5.80 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. a. the salmon's acceleration b. the magnitude of the force F during this intervalarrow_forwardYou have been called to testify as an expert witness in a trial involving a head-on collision. Car A weighs 1515 lb and was traveling eastward. Car B weighs 1125 lb and was traveling westward at 43.0 mph. The cars locked bumpers and slid eastward with their wheels locked for 17.5 ft before stopping. You have measured the coefficient of kinetic friction between the tires and the pavement to be 0.750 . What speed ? (in miles per hour) was car A traveling just before the collision? (This problem uses English units because they would be used in a U.S. legal proceeding.).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning