EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 36P
(a)
To determine
The force exerted on the cart-fan combination.
(b)
To determine
The time required by the cart to travel the distance of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cart of mass mA = 7.3 kg is pushed forward by a horizontal force F. A block of mass mB = 0.54 kg is in turn pushed forward by the cart.
If the cart and the block accelerate forward fast enough, the friction force between the block and the cart would keep the block suspended above the floor without falling down. Given g = 9.8 m/s2 and the static friction coefficient μs = 0.8 between the block and the cart; the floor is horizontal and there is no friction between the cart and the floor.
Calculate the minimal force F on the cart that would keep the block from falling down.
Determine the force Q-> when the block moves with constant velocity. Express your answer in vector form.
A mover has to move a heavy sofa of mass 158 kg to the second floor of the
house. He uses a rope to pull the sofa up a ramp from the first to the second
floor. As he pulls the sofa he makes sure that the rope is parallel to the surface
of the ramp which is at 30.0° to the horizontal. If friction between the sofa and
the ramp is negligible, and the sofa has an acceleration of 0.800 m/s², find the
tension in the rope (in N).
N
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10P
Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardYou push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v? (a) 4 t (b) 2 t (c) t (d) t/2 (e) t/4arrow_forwardIf the vector components of the position of a particle moving in the xy plane as a function of time are x(t)=(2.5ms2)t2i and y(t)=(5.0ms3)t3j, when is the angle between the net force on the particle and the x axis equal to 45?arrow_forward
- A sleigh is being pulled horizontally by a train of horses at a constant speed of 8.05 m/s. The magnitude of the normal force exerted by the snow-covered ground on the sleigh is 6.37 103 N. a. If the coefficient of kinetic friction between the sleigh and the ground is 0.23, what is the magnitude of the kinetic friction force experienced by the sleigh? b. If the only other horizontal force exerted on the sleigh is due to the horses pulling the sleigh, what must be the magnitude of this force?arrow_forwardFor t 0, an object of mass m experiences no force and moves in the positive x direction with a constant speed vi. Beginning at t = 0, when the object passes position x = 0, it experiences a net resistive force proportional to the square of its speed: Fnet=mkv2i, where k is a constant. The speed of the object after t = 0 is given by v = vi/(1 + kvit). (a) Find the position x of the object as a function of time. (b) Find the objects velocity as a function of position.arrow_forwardLet us make the (unrealistic) assumption that a boat of mass m gliding with initial velocity v0 in water is slowed by a viscous retarding force of magnitude bv2, where b is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a speed of v0/l000? (b) Find x(t). How far does the boat travel in this time? Let m = 200 kg, v0 = 2 m/s, and b = 0.2 Nm-2s2.arrow_forward
- You are at the grocery store pushing on a shopping cart. The mass of the cart including all the delicious food you will buy is 26.0 kg. The coefficient of friction between the floor and the wheels of the shopping cart is 0.30. In order to accelerate the cart to 2.40 m/s from rest in 2.50 m, what force must you apply to the cart?arrow_forwardA rope is attached to a box with mass 122 kg and Person A is pulling the box to the right on the floor. There is a frictional force between the floor and the box, and the magnitude of the tension force in the rope is 98 N. Now Person B comes into help person A. Person B pushes the box to the right with a force of 65 N. and the box accelerates at the rate of 0.75 m/s^2 to the right. Person A is pulling the box with the same constant force before and after Person B comes in to help. Assuming that the frictional force is also constant before and after Person B comes in. What is the magnitude of the frictional force between the box and the floor in the unit N? Answer to nearest whole number.arrow_forwardA rope is attached to Box A, and it is pulled on a rough surface due east with friction. The mass of Box A is 50 kg, and the tension force applied to the box is 100 N due east. If Box A is pulled by the tension force for 4.0 s, and the velocity changes from 0.1 m/s due east to 0.65 m/s due east during the time Box A is pulled, answer the following questions. (a) What is the acceleration of Box A during the time it is pulled? (b) What is the change in kinetic energy of Box A during the time it is pulled? (c) What is the net work done on Box A by the tension force and the frictional force together? (d) What is the work done on Box A by the tension force alone? (e) What is the work done on Box A by the frictional force alone?arrow_forward
- The figure shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. Block 1 has mass m1 = 2.1 kg; block 2 has mass m2 = 4 kg. What are (a) the magnitude of the blocks’ acceleration and (b) the tension in the cord?arrow_forwardNick decided to visit the CN Tower with his friend. He gets into a stationary elevator on the ground floor. The elevator and its contents have a combined mass of 2568 kg. The elevator is suspended by a single cable. (a) Draw a FBD of the elevator and calculate the values of all the forces that are acting on it when at rest. (b) If the elevator starts moving upward with a constant velocity of 5.6 m/s, what are the values of the forces acting at this point? (c) After dropping off Nick on the top floor, the elevator descends to the ground floor at 3.7 m/s?, what are the values of all the forces acting at this point?arrow_forwardTwo people are pushing a truck across a parking lot. The truck has a mass of about 2 × 103 kg. First, they take turns pushing. When Person A pushes the truck, the truck accelerates at a rate of 1 m/s2. When Person B pushes the truck, it accelerates at a rate of 2 m/s?. (a) Both people stand behind the truck and push in the same direction. What is the net force on the truck? At what rate will the truck accelerate? (b) Person A stands at the back of the truck and Person B stands at the front, and they push in opposite directions. What is the net force on the truck? At what rate will the truck accelerate? In what direction? For both (a) and (b), draw a picture indicating the forces applied by A and B as well as the motion of the truck.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY