EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 10P
To determine
The reason why the observations of the tossed ball cannot be used to determine the velocity of the train.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two particles are 1 m apart. Particle one has a mass of M= 1000kg, particle two has a mass of m= 100 kg.
A. Find the magnitude of the gravitational force between them. B. Find the magnitude of acceleration for particle 1. C. Find the magnitude of acceleration for particle 2. D. According to your calculations, which particle has the greater magnitude of Acceleration? Why do you think that is ?
You are riding on a train. You have a drinks glass in front of you on a table. You notice that the glass, from your perspective, suddenly starts moving towards the front of the train. This appears to violate Newton’s 1st Law of Motion. Explain, using Newton’s Laws, what is occurring.
Answer the following questions:
a. Daryl is given a mission to travel to the moon. He arrived at the moon and measured his weight to be 85N. If his mass is 72.5 kg, what is the gravitational acceleration to the moon?
b. The gravitational pull of an object in the moon is 1/8 of that on earth. If Daryl's mass is 72.5 kg, what is his weight on the moon?
Chapter 4 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10P
Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cosmic ray muon with mass m = 1.88 1028 kg impacting the Earths atmosphere slows down in proportion to the amount of matter it passes through. One such particle, initially traveling at 2.50 108 m/s in a straight line, decreases in speed to 1.50 108 m/s over a distance of 1.20 km. a. What is the magnitude of the force experienced by the muon? b. How does this force compare to the weight of the muon?arrow_forward(a) Find the magnitude of the gravitational force between a planet with mass 7.50 1024 kg and its moon, with mass 2.70 1022 kg, if the average distance between their centers is 2.80 108 m. (b) What is the acceleration of the moon towards the planet? (c) What is the acceleration of the planet towards the moon?arrow_forwardYou and you friend are sitting on the floor in an empty room a distance, d, apart, and you both have an equal mass. Assume the only force acting on you and your friend is the gravitational force you each exert on each other. No other forces are present. Question #1: a. How long will it take due to gravitational forces before you and your friend meet directly in the middle? Note: You may assume the acceleration remains constant throughout the motion. b. In reality, the acceleration is not constant and is continually changing. Why is this? c. If the acceleration is changing, what effect will this have on the derived time? Will the time increase, decrease, or stay the same? Why? BTW: This is a homework assignment and NOT a graded test. I follow the honor code. When I read over the questions, they seem really vague and I'm having trouble conceptualizing what they're asking. Thanks!arrow_forward
- Which of the following is NOT true of the force of gravity? O There is a gravitational force between any objects that are massive. It is inversely proportional to the square of the distance between the two bodies. O It is proportional to the mass of each object. O The force of gravity only acts on things that are close together.arrow_forwardA flea jumps by exerting a force of 1.02 x 10-5 N straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of 1.16 × 10-6 N on the flea. Find the direction and magnitude (in m/s²) of the acceleration of the flea if its mass is 6.0 × 107 kg. (Let us assume that F points to the right. We will consider this to be the +x direction and vertical to be the +y wind direction.) magnitude 17.1 Did you draw a free-body diagram, and identify the forces acting on the flea? Consider the forces acting on the flea during the time it is in contact with the ground. m/s² direction 6.49 Review vector components. In which of the four quadrants is the resultant force located?° (measured clockwise from the vertical) Tutorial Supporting Materials Physical Constants Submit Answerarrow_forwardA flea jumps by exerting a force of 1.17 x 10-5 N straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of 1.12 x 10-6 N on the flea. Find the direction and magnitude (in m/s²) of the acceleration of the flea if its mass is 6.0 × 10-7 kg. (Let us assume that wind points to the right. We will consider this to be the +x direction and vertical to be the +y direction.) magnitude direction m/s² ° (measured clockwise from the vertical)arrow_forward
- The figure below is for a 7 kg box on a horizontal floor. Initially, you are pushing horizontally on the box and friction is opposing you. Then, you stop pushing the box. Use g = 10 m/s2. v(m/s) 6.0 4.5 3.0 1.5 0.3 0.6 0.9 t(s) Find the gravitational force acting on the box. Find the normal force acting on the box. Assume the frictional force is constant throughout the motion and find the frictional force. Assume the frictional force is constant throughout the motion and find your pushing force. Find the displacement of the box over the entire time shown.arrow_forwardYou have taken a vacation to the moon. You find you feel much lighter than you normally do on Earth. Why is this? You are moving with a lower velocity than you thought. The graivitational pull of the moon is the same as Earth's gravitational pull. The graivitational pull of the moon is less than Earth's gravitational pull. The graivitational pull of the moon is more than Earth's gravitational pull. You have a higher net force acting on you. Submit Answer Tries 0/5arrow_forwardA cart (M = 0.400 kg) is placed on a frictionless horizontal surface and attached by a rope to a vertical hanging mass (m = 0.100 kg). The rope passes over a frictionless pulley. Using 9.80 m/s2 as the acceleration of gravity, what is the acceleration of the system according to Newton's second law? Answer Choices: a) 9.80 m/s2 b) 0.980 m/s2 c) 3.92 m/s2 d) 1.96 m/s2arrow_forward
- QUESTION 4 It is year 2321, and humans colonized Mars. You are in an elevator on a Martian skyscaper and you are standing on a bathroom scale of mass 1.1 kg. Your mass is 74.3 kg. The mass of the elevator car is given as 1,175 kg. While the elevator is moving you notice that the bathroom scale shows your weight as 325.2 Newtons. What should be accelaration of the elevator at the moment you read your weight? Enter your answer by taking the upward direction as the positive direction in units of m/s. (accelaration due to gravity magnitude on Mars surface is 3.75 m/s2)arrow_forwarda. What is the difference between the force in F = ma (Newton's 2nd law) and F= Gm₁m₂/d² (Newton's law of universal gravitation). b. Find the net force on a Planet A of mass 3.0 x 101⁹ kg due to the gravitational attraction of both Planet B of mass 4.9 x 102⁰ kg and the Sun of mass 2.1 x 103⁰ kg, assuming they are at right angles to each other. The distance of Planet A from Planet B is 5.0 x 107 m and distance of the Sun from the Planet A is 5.8 x 106 m. G= 6.67 x 10-1¹ N.m²/kg². |arrow_forwardIf the mass of Jupiter is defined as 1 M₂ = 1.90 x 1027 kg, what is the mass of Saturn (5.68 × 1026 kg) in units of M₁? 0.299 ✓ M₁ What is the mass of Uranus (8.66 x 1025 kg) in M₁? 0.0031 Divide the mass of Uranus by the mass of Jupiter to calculate the mass of Uranus in units of Jupiter's mass. M₁ What is the mass of Earth (5.97 x 1024 kg) in M₁? 0.046 Divide the mass of Earth by the mass of Jupiter to calculate the mass of Earth in units of Jupiter's mass. M₁ Need Help? Read Itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY