
(a)
Interpretation:
To determine which element loses electrons and how many electrons are lost per atom in an ionic compound
Concept Introduction:
The electrons present in the outermost shell of the atom are known as valence electrons.
Valency electrons are important because:
- The valence electrons decide the reactivity of an element.
- The valence electrons decide the manner in which an atom forms a bond with another atom.
- The valence electron in an atom decides the combining capacity of the element.
- Except inner
transition elements valence electrons are present in s or p subshells of elements. - For inner transition elements incompletely filled d or f subshells electrons are considered as valence electrons.
- The group number is similar to number of valence electrons of an atom.
(b)
Interpretation:
To determine which element gains electrons and how many electrons are gained per atom in an ionic compound
Concept Introduction:
The electrons present in the outermost shell of the atom are known as valence electrons.
Valency electrons are important because:
- The valence electrons decide the reactivity of an element.
- The valence electrons decide the manner in which an atom forms a bond with another atom.
- The valence electron in an atom decides the combining capacity of the element.
- Except inner transition elements valence electrons are present in s or p subshells of elements.
- For inner transition elements incompletely filled d or f subshells electrons are considered as valence electrons.
- The group number is similar to number of valence electrons of an atom.
(c)
Interpretation:
To determine the identity and charge on positive ions present in an ionic compound
Concept Introduction:
The electrons present in the outermost shell of the atom are known as valence electrons.
Valency electrons are important because:
- The valence electrons decide the reactivity of an element.
- The valence electrons decide the manner in which an atom forms a bond with another atom.
- The valence electron in an atom decides the combining capacity of the element.
- Except inner transition elements valence electrons are present in s or p subshells of elements.
- For inner transition elements incompletely filled d or f subshells electrons are considered as valence electrons.
- The group number is similar to number of valence electrons of an atom.
(d)
Interpretation:
To determine the identity and charge on negative ions present in an ionic compound
Concept Introduction:
The electrons present in the outermost shell of the atom are known as valence electrons.
Valency electrons are important because:
- The valence electrons decide the reactivity of an element.
- The valence electrons decide the manner in which an atom forms a bond with another atom.
- The valence electron in an atom decides the combining capacity of the element.
- Except inner transition elements valence electrons are present in s or p subshells of elements.
- For inner transition elements incompletely filled d or f subshells electrons are considered as valence electrons.
- The group number is similar to number of valence electrons of an atom.

Trending nowThis is a popular solution!

Chapter 4 Solutions
Study Guide with Selected Solutions for Stoker's General, Organic, and Biological Chemistry, 7th
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning




