![International Edition---engineering Mechanics: Statics, 4th Edition](https://www.bartleby.com/isbn_cover_images/9781305501607/9781305501607_largeCoverImage.gif)
International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN: 9781305501607
Author: Andrew Pytel And Jaan Kiusalaas
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.50P
Compute the magnitudes of the reactions at pin A and the roller at D. Neglect the weight of the body.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Refrigerant 134a (Table B6, p514 of textbook) enters a tube in the evaporator of a refrigerationsystem at 132.73 kPa and a quality of 0.15 at a velocity of 0.5 m/s. The R134a exits the tube as asaturated vapor at −21°C. The tube has an inside diameter of 3.88 cm. Determine the following,a. The pressure drop of the R134a as it flows through the tube (kPa)b. The volumetric flow rate at the inlet of the tube (L/s)c. The mass flow rate of the refrigerant through the tube (g/s)d. The volumetric flow rate at the exit of the tube (L/s)e. The velocity of the refrigerant at the exit of the tube (m/s)f. The heat transfer rate to the refrigerant (kW) as it flows through the tube
Water enters the rigid, covered tank shown in Figure P3.2 with a volumetric flow rate of 0.32L/s. The water line has an inside diameter of 6.3 cm. The air vent on the tank has an inside diameterof 4.5 cm. The water is at a temperature of 30°C and the air in the tank is at atmospheric pressure(1 atm) and 30°C. Determine the air velocity leaving the vent at the instant shown in the figure
Using method of sections, determine the force in member
BC, HC, and HG. State if these members are in tension or
compression.
2 kN
A
5 kN
4 kN
4 kN
3 kN
H
B
C
D
E
3 m
F
2 m
-5 m 5 m-
G
5 m 5 m-
Chapter 4 Solutions
International Edition---engineering Mechanics: Statics, 4th Edition
Ch. 4 - Each of the bodies shown is homogeneous and has a...Ch. 4 - Each of the bodies shown is homogeneous and has a...Ch. 4 - Each of the bodies shown is homogeneous and has a...Ch. 4 - The homogeneous bar weighs 12 lb. It is resting on...Ch. 4 - The homogeneous beam AB weighs 400 lb. For each...Ch. 4 - The homogeneous triangular plate has a mass of 12...Ch. 4 - The bracket of negligible weight is supported by a...Ch. 4 - The figure models the handle of the water cock...Ch. 4 - The high-pressure water cock is rigidly attached...Ch. 4 - Draw the FBD of the entire frame, assuming that...
Ch. 4 - The figure is a model for member CDE of the frame...Ch. 4 - The homogeneous cylinder of weight Wrests in a...Ch. 4 - Calculate the force P that is required to hold the...Ch. 4 - The 60-lb homogeneous disk is suspended from a...Ch. 4 - The 180-kg uniform boom ABC, supported by a...Ch. 4 - The table lamp consists of two uniform arms, each...Ch. 4 - At what angle will the lamp in Prob. 4.16 be in...Ch. 4 - The bent beam ABC is supported by a pin at B and a...Ch. 4 - Compute all reactions at the base A of the traffic...Ch. 4 - The man is holding up the 35-kg ladder ABC by...Ch. 4 - The 1200-lb homogeneous block is placed on rollers...Ch. 4 - The uniform plank ABC weighs 400 N. It is...Ch. 4 - The center of gravity of the 850-N man is at G. If...Ch. 4 - The homogeneous 340-lb sign is suspended from...Ch. 4 - When the truck is empty, it weighs 6000 lb and its...Ch. 4 - The homogeneous bar AB weighs 25 lb. Determine the...Ch. 4 - Determine the smallest horizontal force P that...Ch. 4 - The homogeneous beam AB weighing 800 lb carries...Ch. 4 - The homogeneous 40-kg bar ABC is held in position...Ch. 4 - The horizontal force P is applied to the handle of...Ch. 4 - The homogeneous plate of weight W is suspended...Ch. 4 - Neglecting the mass of the beam, compute the...Ch. 4 - The 1200-kg car is being lowered slowly onto the...Ch. 4 - The crate weighing 400 lb is supported by three...Ch. 4 - Find the smallest value of P for which the crate...Ch. 4 - Determine the rope tension T for which the pulley...Ch. 4 - The 40-kg homogeneous disk is resting on an...Ch. 4 - The 40-kghomogeneous disk is placed on a...Ch. 4 - The mass of the uniform bar AB is 80 kg. Calculate...Ch. 4 - The mechanism shown is a modified Geneva drive-a...Ch. 4 - The center of gravity of the 3000-lb car is at G....Ch. 4 - The 30-lb block is held in place on the smooth...Ch. 4 - The vertical post is supported by two cables (the...Ch. 4 - The uniform ladder of weight W is raised slowly by...Ch. 4 - The uniform, 30-lb ladder is raised slowly by...Ch. 4 - The 90-kg man, whose center of gravity is at G, is...Ch. 4 - The bar ABC is constrained by the pin support A...Ch. 4 - The tensioning mechanism of a magnetic tape drive...Ch. 4 - The homogeneous 300-kg cylinder is pulled over the...Ch. 4 - Compute the magnitudes of the reactions at pin A...Ch. 4 - Each of the sandbags piled on the 380-lb uniform...Ch. 4 - The 18-ft pole is supported by a pin at A and a...Ch. 4 - The supporting structure of the billboard is...Ch. 4 - The self-regulating floodgate ABC, pinned at B, is...Ch. 4 - The cantilever beam is built into a wall at O....Ch. 4 - Determine the force F required to keep the 200-kg...Ch. 4 - The uniform rod AB of weight W is supported by the...Ch. 4 - A machine operator produces the tension Tin the...Ch. 4 - The dump truck consists of a chassis and a tray,...Ch. 4 - The centers of gravity of the 50-kg lift truck and...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - For Probs. 4.61–4.68, (a) draw the free-body...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - The two uniform cylinders, each of weight W, are...Ch. 4 - Draw the FBDs for the following: (a) bar ABC with...Ch. 4 - Draw the FBDs for the beam ABC and the segments AB...Ch. 4 - Draw the FBDs for the entire structure and the...Ch. 4 - The beam consists of the bars AB and BC connected...Ch. 4 - For the frame shown, determine the magnitude of...Ch. 4 - Determine the magnitudes of the pin reactions at A...Ch. 4 - The bars AB and AC are joined by a pin at A and a...Ch. 4 - Neglecting the weights of the members, determine...Ch. 4 - Calculate the magnitudes of the pin reactions at A...Ch. 4 - Determine the magnitude of the pin reaction at A...Ch. 4 - Neglecting friction and the weights of the...Ch. 4 - When activated by the force P, the gripper on a...Ch. 4 - Determine the axle loads (normal forces at A, B,...Ch. 4 - Determine the force P that would produce a tensile...Ch. 4 - The pulley-cable system supports the 150-lb...Ch. 4 - Determine the contact force between the smooth...Ch. 4 - Compute the tension in the cable and the contact...Ch. 4 - Determine the magnitude of the pin reaction at B....Ch. 4 - Determine the tension in the cable at B, given...Ch. 4 - Compute the magnitude of the pin reaction at B....Ch. 4 - Neglecting the weight of the frame, find the...Ch. 4 - Determine the clamping force at A due to the 15-lb...Ch. 4 - Compute the tension in the cable BD when the...Ch. 4 - Calculate the reactions at the built-in support at...Ch. 4 - Determine the magnitudes of the roller reactions...Ch. 4 - The linkage of the braking system consists of the...Ch. 4 - The window washers A and B support themselves and...Ch. 4 - The figure shows a wire cutter. Determine the...Ch. 4 - Find the tension T in the cable when the 180-N...Ch. 4 - The 400-kg drum is held by tongs of negligible...Ch. 4 - Compute the magnitudes of all forces acting on...Ch. 4 - Calculate all forces acting on member CDB.Ch. 4 - The automatic drilling robot must sustain a thrust...Ch. 4 - Determine the clamping (vertical) force applied by...Ch. 4 - Determine the axial force in member BC of the...Ch. 4 - Neglecting friction, determine the relationship...Ch. 4 - Find the magnitudes of the pin reactions at A and...Ch. 4 - The load in the bucket of a skid steer loader is...Ch. 4 - Determine the magnitude of the roller reaction at...Ch. 4 - The tool shown is used to crimp terminals onto...Ch. 4 - The 12-lb force is applied to the handle of the...Ch. 4 - The blade of the bulldozer is rigidly attached to...Ch. 4 - Find the magnitudes of the pin reactions at A, C,...Ch. 4 - The pins at the end of the retaining-ring spreader...Ch. 4 - Determine the magnitudes of the support reactions...Ch. 4 - Find the magnitude of the pin reaction at C....Ch. 4 - For the pliers shown, determine the relationship...Ch. 4 - The device shown is an overload prevention...Ch. 4 - The figure is a schematic of a wire cutter....Ch. 4 - The hinge shown is the type used on the doors of...Ch. 4 - Determine the force in the hydraulic cylinder EF...Ch. 4 - Determine the horizontal force P that would keep...Ch. 4 - Determine the magnitudes of the forces acting on...Ch. 4 - Determine the angle at which the bar AB is in...Ch. 4 - The automobile, with center of gravity at G, is...Ch. 4 - The figure shows a three-pin arch. Determine the...Ch. 4 - The center of gravity of the nonhomogeneous bar AB...Ch. 4 - When suspended from two cables, the rocket assumes...Ch. 4 - The pump oiler is operated by pressing on the...Ch. 4 - The uniform 240-lb bar AB is held in the position...Ch. 4 - Find the force P required to (a) push; and (b)...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Identify all the zero-force members in the four...Ch. 4 - The walkway ABC of the footbridge is stiffened by...Ch. 4 - Find the force in member EF.Ch. 4 - Determine the forces in members AE, BE, and ED.Ch. 4 - Determine the reaction at E and the force in each...Ch. 4 - Determine the force in member AD of the truss.Ch. 4 - Determine the force in member BE of the truss.Ch. 4 - Show that all diagonal members of the truss carry...Ch. 4 - Determine the forces in members FG and AB in terms...Ch. 4 - Determine the forces in members BC, BG, and FG.Ch. 4 - Determine the forces in members EF, BF, and BC.Ch. 4 - Compute the forces in members EF, NE and NO.Ch. 4 - Repeat Prob. 4.152 assuming that the 400-kN force...Ch. 4 - Determine the forces in members BG, CI, and CD.Ch. 4 - Assuming that P=48000lb and that it may be applied...Ch. 4 - Calculate the forces in members BC, CF, and FG.Ch. 4 - Find the forces in members CD, DH, and HI.Ch. 4 - Determine the forces in members CD and DF.Ch. 4 - Compute the forces in members CD and JK, given...Ch. 4 - If PCD=6000lb and PGD=1000lb (both compression),...Ch. 4 - Determine the forces in members EF, BF, and BC.Ch. 4 - Determine the forces in members AC, AD, and DE.Ch. 4 - Determine the forces in members GI, PH, and GH....Ch. 4 - Determine the forces in members CD, IJ, and NJ of...Ch. 4 - Calculate the forces in members AB and DE.Ch. 4 - (a) Find the forces in members CE, CF, and DF. (b)...Ch. 4 - Determine the forces in members BC and BE and the...Ch. 4 - A couple acting on the winch at G slowly raises...Ch. 4 - The uniform, 20-kg bar is placed between two...Ch. 4 - The 320-lb homogeneous spool is placed on the...Ch. 4 - Determine the magnitude of the pin reaction at A,...Ch. 4 - Determine the couple C that will hold the bar AB...Ch. 4 - The 800-lb force is applied to the pin at E....Ch. 4 - The weight W=6kN hangs from the cable which passes...Ch. 4 - The 2000-lb and 6000-lb forces are applied to the...Ch. 4 - The two couples act at the midpoints of bars AB...Ch. 4 - Determine the forces in members AC and AD of the...Ch. 4 - Determine the angle for which the uniform bar of...Ch. 4 - Determine the magnitude of the force exerted by...Ch. 4 - Calculate the forces in members (a) DE; (b) BE;...Ch. 4 - Determine the ratio P/Q for which the parallel...Ch. 4 - The 30-lb block C rests on the uniform 14-lb bar...Ch. 4 - The 30-lb homogeneous bar AB supports the 60-lb...Ch. 4 - Determine the forces in members (a) EF; and (b)...Ch. 4 - Find the magnitude of the pin reaction at B caused...Ch. 4 - The breaking strength of the cable FG that...Ch. 4 - Determine the forces in members GH, BH, and BC of...Ch. 4 - The 80-N force is applied to the handle of the...Ch. 4 - The tongs shown are designed for lifting blocks of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine the normal stresses σn and σt and the shear stress τnt at this point if they act on the rotated stress element shownarrow_forwardUsing method of joints, determine the force in each member of the truss and state if the members are in tension or compression. A E 6 m D 600 N 4 m B 4 m 900 Narrow_forwardQuestion 5. The diagram below shows a mass suspended from a tie supported by two horizontal braces of equal length. The tie forms an angle "a" of 60° to the horizontal plane, the braces form an angle 0 of 50° to the vertical plane. If the mass suspended is 10 tonnes, and the braces are 10m long, find: a) the force in the tie; & b) the force in the braces Horizontal Braces, Tie Massarrow_forward
- = MMB 241 Tutorial 2.pdf 1 / 3 75% + + Tutorial z Topic: Kinematics of Particles:-. QUESTIONS 1. Use the chain-rule and find y and ŷ in terms of x, x and x if a) y=4x² b) y=3e c) y = 6 sin x 2. The particle travels from A to B. Identify the three unknowns, and write the three equations needed to solve for them. 8 m 10 m/s 30° B x 3. The particle travels from A to B. Identify the three unknowns, and write the three equations needed to solve for them. A 40 m/s 20 m B 1arrow_forward3 m³/s- 1 md 45° V 1.8 mr 2mrarrow_forward= MMB 241 Tutorial 2.pdf 3/3 75% + + 6. A particle is traveling along the parabolic path y = 0.25 x². If x = 8 m, vx=8 m/s, and ax= 4 m/s² when t = 2 s, determine the magnitude of the particle's velocity and acceleration at this instant. y = 0.25x² -x 7. Determine the speed at which the basketball at A must be thrown at the angle of 30° so that it makes it to the basket at B. 30° -x 1.5 m B 3 m -10 m- 8. The basketball passed through the hoop even though it barely cleared the hands of the player B who attempted to block it. Neglecting the size of the ball, determine the 2arrow_forward
- Adhesives distribute loads across the interface, whereas fasteners create areas of localized stresses. True or Falsearrow_forwardA continuous column flash system is separating 100 kmol/h of a saturated liquid feed that is 45 mol% methanol and 55 mol% water at 1.0 atm. Operate with L/V = 1.5 and the outlet bottoms at xN = 0.28. Find the values of FL, FV, y1, and the number of equilibrium stages required. Find the value of Q used to vaporize FV. For a normal flash with the same feed and the same V/F, find the values of x and y.arrow_forwardA beer still is being used to separate ethanol from water at 1.0 atm. The saturated liquid feed flow rate is F = 840.0 kmol/h. The feed is 44.0 mol% ethanol. The saturated vapor steam is pure water with ratio of steam flow rate S to feed rate, S/F = 2/3. We desire a bottoms product that is 4.0 mol% ethanol. CMO is valid. Find the mole fraction of ethanol in the distillate vapor, yD,E. Find the number of equilibrium stages required. If the feed is unchanged and the S/F ratio is unchanged, but the number of stages is increased to a very large number, what is the lowest bottoms mole fraction of ethanol that can be obtained?arrow_forward
- 3.1 Convert the following base-2 numbers to base-10: (a) 1011001, (b) 110.0101, and (c) 0.01011.arrow_forwardConsider the forces acting on the handle of the wrench in (Figure 1). a) Determine the moment of force F1={−F1={−2i+i+ 4 jj −−8k}lbk}lb about the zz axis. Express your answer in pound-inches to three significant figures. b) Determine the moment of force F2={F2={3i+i+ 7 jj −−6k}lbk}lb about the zz axis. Express your answer in pound-inches to three significant figures.arrow_forwardI need you to explain each and every step (Use paper)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305501607/9781305501607_smallCoverImage.gif)
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License