International Edition---engineering Mechanics: Statics, 4th Edition
International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN: 9781305501607
Author: Andrew Pytel And Jaan Kiusalaas
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.155P

Assuming that P = 48000 lb and that it may be applied at any joint on the line FJ, determine the location of P that would cause (a) maximum tension in member HI; (b) maximum compression in member CI; and (c) maximum tension in member CI. Also determine the magnitude of the indicated force in each case.

Chapter 4, Problem 4.155P, Assuming that P=48000lb and that it may be applied at any joint on the line FJ, determine the

Expert Solution
Check Mark
To determine

(a)

Location of force 'P' that would cause maximum tension in member HI.

Answer to Problem 4.155P

The maximum tension occurs at HI, when force 'P' acts at H.

The magnitude of maximum tension PHI is 48000lb.

Explanation of Solution

Given information:

International Edition---engineering Mechanics: Statics, 4th Edition, Chapter 4, Problem 4.155P , additional homework tip  1

Assume P=48000lb.

Steps to follow in the equilibrium analysis of a body are:

1. Draw the free body diagram.

2. Write the equilibrium equations.

3. Solve the equations for the unknowns.

Calculation:

Assume Ey as the vertical reaction at point E.

Consider entire body

Force 'P' at point J

  Ey=P

Force 'P' at point I

  Ey=0.75P

Force 'P' at point H

  Ey=0.5P

Force 'P' at point G

  Ey=0.25P

Force 'P' at point F

  Ey=0

FBD of below section

International Edition---engineering Mechanics: Statics, 4th Edition, Chapter 4, Problem 4.155P , additional homework tip  2

Assume PCD,PCI,PHI as the forces acting on member CD, CI and HI respectively.

If force 'P' acts at point J

Write equilibrium equation in vertical direction.

  Fy=0

  PCI=0

For the equilibrium of above section, the bending moment about point C is equal to zero.

  MC=0

  PHI=0

If force 'P' acts at point I

  EyP+(12)PCI=0

Solve

  PCI=2(PEy)=2(P0.75P)=0.353P

For the equilibrium of above section, the bending moment about point C is equal to zero.

  MC=0

  Ey(2a)P(a)PHI(a)=0

Solve

  PHI=2(0.75P)P=0.5P

If force 'P' acts at points G, H and F,

Write equilibrium equation in vertical direction.

  Fy=0

  Ey+(1 2 )PCI=0PCI=2Ey

For the equilibrium of above section, the bending moment about point C is equal to zero.

  MC=0

  Ey(2a)PHI(a)=0PHI=2Ey

The maximum tension occurs at HI, when force 'P' acts at H.

  PHI=2Ey=2(0.5P)=P=48000lb

Conclusion:

The maximum tension occurs at HI, when force 'P' acts at H.

The magnitude of maximum tension PHI is 48000lb.

Expert Solution
Check Mark
To determine

(b)

Location of force 'P' that would cause maximum compression in member CI.

Answer to Problem 4.155P

The maximum compression occurs at CI, when force 'P' acts at H.

The magnitude of maximum compression PCI is 33941.12lb.

Explanation of Solution

Given information:

International Edition---engineering Mechanics: Statics, 4th Edition, Chapter 4, Problem 4.155P , additional homework tip  3

Assume P=48000lb.

Steps to follow in the equilibrium analysis of a body are:

1. Draw the free body diagram.

2. Write the equilibrium equations.

3. Solve the equations for the unknowns.

Calculation:

According to sub part a

Force 'P' at point H

  Ey=0.5P

The force PCI in member CI

  PCI=2Ey

The maximum compression occurs at CI, when force 'P' acts at H.

  PCI=2Ey=2(0.5P)=0.7071P=33941.12lb

Conclusion:

The maximum compression occurs at CI, when force 'P' acts at H.

The magnitude of maximum compression PCI is 33941.12lb.

Expert Solution
Check Mark
To determine

(c)

Location of force 'P' that would cause maximum tension in member CI

Answer to Problem 4.155P

The maximum compression occurs at CI, when force 'P' acts at I.

The magnitude of maximum tension PCI is 16944lb.

Explanation of Solution

Given information:

International Edition---engineering Mechanics: Statics, 4th Edition, Chapter 4, Problem 4.155P , additional homework tip  4

Assume P=48000lb.

Steps to follow in the equilibrium analysis of a body are:

1. Draw the free body diagram.

2. Write the equilibrium equations.

3. Solve the equations for the unknowns.

Calculation:

According to sub part a

If force 'P' acts at point I

  EyP+(12)PCI=0

Solve

  PCI=2(PEy)=2(P0.75P)=0.353P=16944lb

The maximum tension occurs at member CI when force 'P' acts at point I.

Conclusion:

The maximum compression occurs at CI, when force 'P' acts at I.

The magnitude of maximum tension PCI is 16944lb.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2.0 m 100 kg 2.0 m 0.5 m 1.5 m 1.5 m The pulley at E is frictionless. Point B is a pinned connection; support A is a fixed support. The pin at C is in a smooth slot. s in: Determine the magnitude of of the x-component of the reaction force at A, Ax= N. Determine the magnitude of of the y-component of the reaction force at A, Ay= N. Determine the magnitude of of the external moment applied at A, MA= Nm. O O :
Assuming that P = 48 000N and that it may be applied at any joint on the line FJ, determine the location of P that would cause (a) maximum tension in member HI; (b) maximum compression in member Cl; and (c) maximum tension in member Cl. Also determine the magnitude of the indicated force in each case. a a D E A a F G H P
Given the magnitudes of the applied forces on the truss shown below are 0 = 2 kN, P = 3 kN, Q = 3 kN, R = 5 kN, S = 3 kN, T= 4 kN and U = 4 kN. kN P kN kN R kN S kN T kN KN H. 0.4 m K A 0.8 m 0.8 m 0.8 m 0.8 m 0.8 m 0.8 m Determine the forces in members EF, CF and EG. Answers (tolerance 0.5 kN, observe tension positive sign convention): FEF =数字 单位 FCF =数字 单位 FEG = 单位 B.

Chapter 4 Solutions

International Edition---engineering Mechanics: Statics, 4th Edition

Ch. 4 - The figure is a model for member CDE of the frame...Ch. 4 - The homogeneous cylinder of weight Wrests in a...Ch. 4 - Calculate the force P that is required to hold the...Ch. 4 - The 60-lb homogeneous disk is suspended from a...Ch. 4 - The 180-kg uniform boom ABC, supported by a...Ch. 4 - The table lamp consists of two uniform arms, each...Ch. 4 - At what angle will the lamp in Prob. 4.16 be in...Ch. 4 - The bent beam ABC is supported by a pin at B and a...Ch. 4 - Compute all reactions at the base A of the traffic...Ch. 4 - The man is holding up the 35-kg ladder ABC by...Ch. 4 - The 1200-lb homogeneous block is placed on rollers...Ch. 4 - The uniform plank ABC weighs 400 N. It is...Ch. 4 - The center of gravity of the 850-N man is at G. If...Ch. 4 - The homogeneous 340-lb sign is suspended from...Ch. 4 - When the truck is empty, it weighs 6000 lb and its...Ch. 4 - The homogeneous bar AB weighs 25 lb. Determine the...Ch. 4 - Determine the smallest horizontal force P that...Ch. 4 - The homogeneous beam AB weighing 800 lb carries...Ch. 4 - The homogeneous 40-kg bar ABC is held in position...Ch. 4 - The horizontal force P is applied to the handle of...Ch. 4 - The homogeneous plate of weight W is suspended...Ch. 4 - Neglecting the mass of the beam, compute the...Ch. 4 - The 1200-kg car is being lowered slowly onto the...Ch. 4 - The crate weighing 400 lb is supported by three...Ch. 4 - Find the smallest value of P for which the crate...Ch. 4 - Determine the rope tension T for which the pulley...Ch. 4 - The 40-kg homogeneous disk is resting on an...Ch. 4 - The 40-kghomogeneous disk is placed on a...Ch. 4 - The mass of the uniform bar AB is 80 kg. Calculate...Ch. 4 - The mechanism shown is a modified Geneva drive-a...Ch. 4 - The center of gravity of the 3000-lb car is at G....Ch. 4 - The 30-lb block is held in place on the smooth...Ch. 4 - The vertical post is supported by two cables (the...Ch. 4 - The uniform ladder of weight W is raised slowly by...Ch. 4 - The uniform, 30-lb ladder is raised slowly by...Ch. 4 - The 90-kg man, whose center of gravity is at G, is...Ch. 4 - The bar ABC is constrained by the pin support A...Ch. 4 - The tensioning mechanism of a magnetic tape drive...Ch. 4 - The homogeneous 300-kg cylinder is pulled over the...Ch. 4 - Compute the magnitudes of the reactions at pin A...Ch. 4 - Each of the sandbags piled on the 380-lb uniform...Ch. 4 - The 18-ft pole is supported by a pin at A and a...Ch. 4 - The supporting structure of the billboard is...Ch. 4 - The self-regulating floodgate ABC, pinned at B, is...Ch. 4 - The cantilever beam is built into a wall at O....Ch. 4 - Determine the force F required to keep the 200-kg...Ch. 4 - The uniform rod AB of weight W is supported by the...Ch. 4 - A machine operator produces the tension Tin the...Ch. 4 - The dump truck consists of a chassis and a tray,...Ch. 4 - The centers of gravity of the 50-kg lift truck and...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - For Probs. 4.61–4.68, (a) draw the free-body...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - (a) draw the free-body diagrams for the entire...Ch. 4 - The two uniform cylinders, each of weight W, are...Ch. 4 - Draw the FBDs for the following: (a) bar ABC with...Ch. 4 - Draw the FBDs for the beam ABC and the segments AB...Ch. 4 - Draw the FBDs for the entire structure and the...Ch. 4 - The beam consists of the bars AB and BC connected...Ch. 4 - For the frame shown, determine the magnitude of...Ch. 4 - Determine the magnitudes of the pin reactions at A...Ch. 4 - The bars AB and AC are joined by a pin at A and a...Ch. 4 - Neglecting the weights of the members, determine...Ch. 4 - Calculate the magnitudes of the pin reactions at A...Ch. 4 - Determine the magnitude of the pin reaction at A...Ch. 4 - Neglecting friction and the weights of the...Ch. 4 - When activated by the force P, the gripper on a...Ch. 4 - Determine the axle loads (normal forces at A, B,...Ch. 4 - Determine the force P that would produce a tensile...Ch. 4 - The pulley-cable system supports the 150-lb...Ch. 4 - Determine the contact force between the smooth...Ch. 4 - Compute the tension in the cable and the contact...Ch. 4 - Determine the magnitude of the pin reaction at B....Ch. 4 - Determine the tension in the cable at B, given...Ch. 4 - Compute the magnitude of the pin reaction at B....Ch. 4 - Neglecting the weight of the frame, find the...Ch. 4 - Determine the clamping force at A due to the 15-lb...Ch. 4 - Compute the tension in the cable BD when the...Ch. 4 - Calculate the reactions at the built-in support at...Ch. 4 - Determine the magnitudes of the roller reactions...Ch. 4 - The linkage of the braking system consists of the...Ch. 4 - The window washers A and B support themselves and...Ch. 4 - The figure shows a wire cutter. Determine the...Ch. 4 - Find the tension T in the cable when the 180-N...Ch. 4 - The 400-kg drum is held by tongs of negligible...Ch. 4 - Compute the magnitudes of all forces acting on...Ch. 4 - Calculate all forces acting on member CDB.Ch. 4 - The automatic drilling robot must sustain a thrust...Ch. 4 - Determine the clamping (vertical) force applied by...Ch. 4 - Determine the axial force in member BC of the...Ch. 4 - Neglecting friction, determine the relationship...Ch. 4 - Find the magnitudes of the pin reactions at A and...Ch. 4 - The load in the bucket of a skid steer loader is...Ch. 4 - Determine the magnitude of the roller reaction at...Ch. 4 - The tool shown is used to crimp terminals onto...Ch. 4 - The 12-lb force is applied to the handle of the...Ch. 4 - The blade of the bulldozer is rigidly attached to...Ch. 4 - Find the magnitudes of the pin reactions at A, C,...Ch. 4 - The pins at the end of the retaining-ring spreader...Ch. 4 - Determine the magnitudes of the support reactions...Ch. 4 - Find the magnitude of the pin reaction at C....Ch. 4 - For the pliers shown, determine the relationship...Ch. 4 - The device shown is an overload prevention...Ch. 4 - The figure is a schematic of a wire cutter....Ch. 4 - The hinge shown is the type used on the doors of...Ch. 4 - Determine the force in the hydraulic cylinder EF...Ch. 4 - Determine the horizontal force P that would keep...Ch. 4 - Determine the magnitudes of the forces acting on...Ch. 4 - Determine the angle at which the bar AB is in...Ch. 4 - The automobile, with center of gravity at G, is...Ch. 4 - The figure shows a three-pin arch. Determine the...Ch. 4 - The center of gravity of the nonhomogeneous bar AB...Ch. 4 - When suspended from two cables, the rocket assumes...Ch. 4 - The pump oiler is operated by pressing on the...Ch. 4 - The uniform 240-lb bar AB is held in the position...Ch. 4 - Find the force P required to (a) push; and (b)...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Using the method of joints, calculate the force in...Ch. 4 - Identify all the zero-force members in the four...Ch. 4 - The walkway ABC of the footbridge is stiffened by...Ch. 4 - Find the force in member EF.Ch. 4 - Determine the forces in members AE, BE, and ED.Ch. 4 - Determine the reaction at E and the force in each...Ch. 4 - Determine the force in member AD of the truss.Ch. 4 - Determine the force in member BE of the truss.Ch. 4 - Show that all diagonal members of the truss carry...Ch. 4 - Determine the forces in members FG and AB in terms...Ch. 4 - Determine the forces in members BC, BG, and FG.Ch. 4 - Determine the forces in members EF, BF, and BC.Ch. 4 - Compute the forces in members EF, NE and NO.Ch. 4 - Repeat Prob. 4.152 assuming that the 400-kN force...Ch. 4 - Determine the forces in members BG, CI, and CD.Ch. 4 - Assuming that P=48000lb and that it may be applied...Ch. 4 - Calculate the forces in members BC, CF, and FG.Ch. 4 - Find the forces in members CD, DH, and HI.Ch. 4 - Determine the forces in members CD and DF.Ch. 4 - Compute the forces in members CD and JK, given...Ch. 4 - If PCD=6000lb and PGD=1000lb (both compression),...Ch. 4 - Determine the forces in members EF, BF, and BC.Ch. 4 - Determine the forces in members AC, AD, and DE.Ch. 4 - Determine the forces in members GI, PH, and GH....Ch. 4 - Determine the forces in members CD, IJ, and NJ of...Ch. 4 - Calculate the forces in members AB and DE.Ch. 4 - (a) Find the forces in members CE, CF, and DF. (b)...Ch. 4 - Determine the forces in members BC and BE and the...Ch. 4 - A couple acting on the winch at G slowly raises...Ch. 4 - The uniform, 20-kg bar is placed between two...Ch. 4 - The 320-lb homogeneous spool is placed on the...Ch. 4 - Determine the magnitude of the pin reaction at A,...Ch. 4 - Determine the couple C that will hold the bar AB...Ch. 4 - The 800-lb force is applied to the pin at E....Ch. 4 - The weight W=6kN hangs from the cable which passes...Ch. 4 - The 2000-lb and 6000-lb forces are applied to the...Ch. 4 - The two couples act at the midpoints of bars AB...Ch. 4 - Determine the forces in members AC and AD of the...Ch. 4 - Determine the angle for which the uniform bar of...Ch. 4 - Determine the magnitude of the force exerted by...Ch. 4 - Calculate the forces in members (a) DE; (b) BE;...Ch. 4 - Determine the ratio P/Q for which the parallel...Ch. 4 - The 30-lb block C rests on the uniform 14-lb bar...Ch. 4 - The 30-lb homogeneous bar AB supports the 60-lb...Ch. 4 - Determine the forces in members (a) EF; and (b)...Ch. 4 - Find the magnitude of the pin reaction at B caused...Ch. 4 - The breaking strength of the cable FG that...Ch. 4 - Determine the forces in members GH, BH, and BC of...Ch. 4 - The 80-N force is applied to the handle of the...Ch. 4 - The tongs shown are designed for lifting blocks of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Engineering Basics - Statics & Forces in Equilibrium; Author: Solid Solutions - Professional Design Solutions;https://www.youtube.com/watch?v=dQBvQ2hJZFg;License: Standard YouTube License, CC-BY