Elements Of Physical Chemistry
Elements Of Physical Chemistry
7th Edition
ISBN: 9780198727873
Author: ATKINS, P. W. (peter William), De Paula, Julio
Publisher: Oxford University Press
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 4.21P

(a)

Interpretation Introduction

Interpretation:

The overall mole fraction of phenol in the given mixture has to be determined.

Concept introduction:

A mole fraction of a molecule in a mixture is the ratio of number of moles of particular molecule to the sum of number of moles of all molecules in the mixture.  Equation for mole fraction of a molecule in a mixture of three molecules (A, B and C) is,

moleculefractionofA,(χA=numbersof moles ofmolecule A(nA)total number of moles(nA+nB+nC

The lever rule is mainly used to determine compositions of phases and the relative proportions of phases to each other in Binary diagrams of compounds and using the lever rule we can determine quantitatively the relative composition of a mixture in a two phase region in a phase diagram.

According to lever rule, we can write,

n=n'+n''

Where,

n': Total amount of molecule in one

n'': Total amount of molecule in other phase

The total amount of A in the sample is nxA where xA it is the overall mole fraction of A in the sample.  The overall amount of A is also the sum of its amounts in the two phases, where it has the mole fractions xA'andxA'' respectively.

Thus,

nxA=n'xA'+n''xA''n'(xA'xA)=n''(xAxA'')

(b)

Interpretation Introduction

Interpretation:

The relative amounts of two phases in the given mixture has to be determined using lever rule.

Concept introduction:

A mole fraction of a molecule in a mixture is the ratio of number of moles of particular molecule to the sum of number of moles of all molecules in the mixture.  Equation for mole fraction of a molecule in a mixture of three molecules (A, B and C) is,

  χA=numbersof moles ofmolecule A(nA)total number of moles(nA+nB+nC

The lever rule is mainly used to determine compositions of phases and the relative proportions of phases to each other in Binary diagrams of compounds and using the lever rule we can determine quantitatively the relative composition of a mixture in a two phase region in a phase diagram.

According to lever rule, we can write,

n=n'+n''

Where,

n': Total amount of molecule in one phase

n'': Total amount of molecule in other phase

The total amount of A in the sample is nxA where xA it is the overall mole fraction of A in the sample.  The overall amount of A is also the sum of its amounts in the two phases, where it has the mole fractions xA'andxA'' respectively.

Thus,

  nxA=n'xA'+n''xA''n'(xA'xA)=n''(xAxA'')

Blurred answer
Students have asked these similar questions
Bookmarks Profiles Tab Window Help Chemical Formula - Aktiv Che X + → C 11 a app.aktiv.com Google Chrome isn't your default browser Set as default Question 12 of 16 Q Fri Feb 2 Verify it's you New Chrome availabl- Write the balanced molecular chemical equation for the reaction in aqueous solution for mercury(I) nitrate and chromium(VI) sulfate. If no reaction occurs, simply write only NR. Be sure to include the proper phases for all species within the reaction. 3 Hg(NO3)2(aq) + Cг2(SO4)3(aq) → 3 Hg₂SO (s) + 2 Cr(NO3), (aq) ean Ui mate co ence an climate bility inc ulnerabili women, main critic CLIMATE-INI ernational + 10 O 2 W FEB 1 + 4- 3- 2- 2 2 ( 3 4 NS 28 2 ty 56 + 2+ 3+ 4+ 7 8 9 0 5 (s) (1) Ch O 8 9 (g) (aq) Hg NR CI Cr x H₂O A 80 Q A DII A F2 F3 FA F5 F6 F7 F8 F9 #3 EA $ do 50 % 6 CO & 7 E R T Y U 8 ( 9 0 F10 34 F11 川 F12 Subr + delete 0 { P }
Deducing the reactants of a Diels-Alder reaction n the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. >
Predict the major products of the following organic reaction: + Some important notes: A ? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure.

Chapter 4 Solutions

Elements Of Physical Chemistry

Ch. 4 - Prob. 4D.1STCh. 4 - Prob. 4D.2STCh. 4 - Prob. 4D.3STCh. 4 - Prob. 4D.4STCh. 4 - Prob. 4E.1STCh. 4 - Prob. 4E.2STCh. 4 - Prob. 4F.1STCh. 4 - Prob. 4A.1ECh. 4 - Prob. 4A.2ECh. 4 - Prob. 4A.3ECh. 4 - Prob. 4A.4ECh. 4 - Prob. 4A.5ECh. 4 - Prob. 4A.6ECh. 4 - Prob. 4B.1ECh. 4 - Prob. 4B.2ECh. 4 - Prob. 4B.3ECh. 4 - Prob. 4B.4ECh. 4 - Prob. 4B.5ECh. 4 - Prob. 4B.6ECh. 4 - Prob. 4B.7ECh. 4 - Prob. 4B.8ECh. 4 - Prob. 4C.1ECh. 4 - Prob. 4C.2ECh. 4 - Prob. 4C.3ECh. 4 - Prob. 4C.4ECh. 4 - Prob. 4C.5ECh. 4 - Prob. 4C.6ECh. 4 - Prob. 4C.7ECh. 4 - Prob. 4D.1ECh. 4 - Prob. 4D.2ECh. 4 - Prob. 4D.3ECh. 4 - Prob. 4D.4ECh. 4 - Prob. 4D.5ECh. 4 - Prob. 4D.6ECh. 4 - Prob. 4D.7ECh. 4 - Prob. 4D.8ECh. 4 - Prob. 4D.9ECh. 4 - Prob. 4D.10ECh. 4 - Prob. 4D.11ECh. 4 - Prob. 4D.12ECh. 4 - Prob. 4D.13ECh. 4 - Prob. 4E.1ECh. 4 - Prob. 4E.2ECh. 4 - Prob. 4E.3ECh. 4 - Prob. 4E.4ECh. 4 - Prob. 4F.1ECh. 4 - Prob. 4F.2ECh. 4 - Prob. 4F.3ECh. 4 - Prob. 4.1DQCh. 4 - Prob. 4.2DQCh. 4 - Prob. 4.3DQCh. 4 - Prob. 4.4DQCh. 4 - Prob. 4.5DQCh. 4 - Prob. 4.6DQCh. 4 - Prob. 4.8DQCh. 4 - Prob. 4.9DQCh. 4 - Prob. 4.10DQCh. 4 - Prob. 4.11DQCh. 4 - Prob. 4.12DQCh. 4 - Prob. 4.13DQCh. 4 - Prob. 4.14DQCh. 4 - Prob. 4.15DQCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.1PRCh. 4 - Prob. 4.2PRCh. 4 - Prob. 4.3PRCh. 4 - Prob. 4.4PRCh. 4 - Prob. 4.5PRCh. 4 - Prob. 4.6PR
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY