Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
10th Edition
ISBN: 9780073398204
Author: Richard G Budynas, Keith J Nisbett
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 33P

For the steel countershaft specified in the table, find the slope of the shaft at each bearing. Use superposition with the deflection equations in Table A–9. Assume the bearings constitute simple supports.

Chapter 4, Problem 33P, For the steel countershaft specified in the table, find the slope of the shaft at each bearing. Use

Expert Solution & Answer
Check Mark
To determine

The slope of the shaft at each bearing.

Answer to Problem 33P

The slope of the shaft at bearing point O is 0.0128rad and the slope of the shaft at bearing point C is 0.0222rad.

Explanation of Solution

Calculate the force FB, using the net torque equation.

    T=0(FA×dA2×cosθ1)+(FB×dB2×cosθ2)=0FB=FAdAcosθ1dBcosθ2                      (I)

Here, the force acting on pulley A is FA, the diameter of pulley A is dA, the angle at which force acts on pulley A is θ1, the force acting on pulley B is FB, the diameter of pulley B is dB and the angle at which force acts on pulley B is θ2.

Write the equation for moment of inertia of the shaft.

    I=πd464                                                (II)

Here, the diameter of the shaft is d.

The free body diagram of the beam in the direction of y-axis is shown below.

Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering), Chapter 4, Problem 33P , additional homework tip  1

Figure (1)

Write the force component at point A along y-axis.

    FAy=FAcos20°

Write the force component at point B along y-axis.

    FBy=FBsin20°

Write the deflection equation along y-axis for beam 6 and beam 10 using Table A-9.

    yOA=FAyb1x6EIl(x2+b12l2)+FBya2x6EIl(l2x2)

Here, the force component at point A along y-axis is FAy , the location of point A from the point C is b1 , the distance of point A from left end is x , the total length of the beam between point O point C is l , Young modulus of the material is E , moment of inertia of the beam is I , the force component at point B along y-axis is FBy and the location of point B from the point C is a2.

Write the expression for net slope of the shaft along z-axis at point O.

    (θO)z=(dyOAdx)x=0

Substitute FAyb1x6EIl(x2+b12l2)+FBya2x6EIl(l2x2) for yOA.

    (θO)z={ddxFAyb1x6EIl(x2+b12l2)+FBya2x6EIl(l2x2)}x=0={16EIl[FAyb1(3x2+b12l2)+FBya2(l23x2)]}x=0=16EIl[FAyb1(3(0)2+b12l2)+FBya2(l23(0)2)]=16EIl[FAyb1(b12l2)+FBya2l2]

Substitute FAcos20° for FAy and FBsin20° for FBy.

    (θO)z=16EIl[(FAcos20°)b1(b12l2)+(FBsin20°)a2l2]                       (III)

The free body diagram of the beam in the direction of z-axis is shown below.

Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering), Chapter 4, Problem 33P , additional homework tip  2

Figure (2)

Write the force component at point A along z-axis.

    FAz=FAsin20°

Write the force component at point B along z-axis.

    FBz=FBcos20°

Write the deflection equation along z-axis for beam 6 and beam 10 using Table A-9.

    zOA=FAzb1x6EIl(x2+b12l2)+FBza2x6EIl(l2x2)

Here, the force component at point A along z-axis is FAz and the force component at point B along z-axis is FBz.

Write the expression for net slope of the shaft along y-axis at point O.

    (θO)y=(dzOAdx)x=0

Substitute FAzb1x6EIl(x2+b12l2)+FBza2x6EIl(l2x2) for zOA.

    (θO)y={ddxFAzb1x6EIl(x2+b12l2)+FBza2x6EIl(l2x2)}x=0={16EIl[FAzb1(3x2+b12l2)+FBza2(l23x2)]}x=0=16EIl[FAzb1(3(0)2+b12l2)+FBza2(l23(0)2)]=16EIl[FAzb1(b12l2)+FBza2l2]

Substitute FAsin20° for FAz and FBcos20° for FBz.

    (θO)y=16EIl[(FAsin20°)b1(b12l2)+(FBcos20°)a2l2]               (IV)

Write the expression for the net slope at point O.

    ΘO=(θO)z2+(θO)y2                                                                         (V)

Write the deflection equation along y-axis for section AC for beam 6 and beam 10 using Table A-9.

    yAC=FAya1(lx)6EIl(x2+a122lx)+FBya2x6EIl(l2x2)

Here, the location of point A from point O is a1.

Write the expression for net slope of the shaft along z-axis at point C.

    (θC)z=(dyACdx)x=l

Substitute FAya1(lx)6EIl(x2+a122lx)+FBya2x6EIl(l2x2) for yAC.

    (θC)z={ddxFAya1(lx)6EIl(x2+a122lx)+FBya2x6EIl(l2x2)}x=l={16EIl[FAya1(6lx2l23x2a12)+FBya2(l23x2)]}x=l=16EIl[FAya1(6ll2l23l2a12)+FBya2(l23l2)]=16EIl[FAya1(l2a12)2FBya2l2]

Substitute FAcos20° for FAy and FBsin20° for FBy.

    (θC)z=16EIl[(FAcos20°)a1(l2a12)2(FBsin20°)a2l2]                  (VI)

Write the deflection equation along z-axis for section AC for beam 6 and beam 10 using Table A-9.

    zAC=FAza1(lx)6EIl(x2+a122lx)+FBza2x6EIl(l2x2)

Write the expression for net slope of the shaft along z-axis at point C.

    (θC)y=(dzACdx)x=l

Substitute FAza1(lx)6EIl(x2+a122lx)+FBza2x6EIl(l2x2) for zAC.

    (θC)y={ddxFAza1(lx)6EIl(x2+a122lx)+FBza2x6EIl(l2x2)}x=l={16EIl[FAza1(6lx2l23x2a12)+FBza2(l23x2)]}x=l=16EIl[FAza1(6ll2l23l2a12)+FBza2(l23l2)]=16EIl[FAza1(l2a12)2FBza2l2]

Substitute FAsin20° for FAz and FBcos20° for FBz.

    (θC)y=16EIl[(FAsin20°)a1(l2a12)2(FBcos20°)a2l2]              (VII)

Write the expression for the net slope at point C.

    ΘC=(θC)z2+(θC)y2                                                                            (VIII)

Conclusion:

Substitute 300lbf for FA, 20in for dA, 20° for θ1, 8in for dB and 20° for θ2 in Equation (I).

    FB=300lbf×20cos20°8cos20°=750lbf

Substitute 1.25in for d in Equation (II).

    I=π×(1.25in)464=0.1198in4

Substitute 300lbf for FA, 14in for b1, 30in for l, 30×106psi for E, 0.1198in4 for I, 750lbf for FB and 9in for a2 in Equation (III).

    (θO)z=16(30×106psi)(0.1198in4)(30in)[(300lbf×cos20°)(14in)((14in)2(30in)2)+(750lbf×sin20°)(9in)(30in)2]=0.00751rad

Thus, the slope of the shaft at bearing point O along z-axis is 0.00751rad.

Substitute 300lbf for FA, 14in for b1, 30in for l, 30×106psi for E, 0.1198in4 for I, 750lbf for FB and 9in for a2 in Equation (IV).

    (θO)y=16(30×106psi)(0.1198in4)(30)[(300lbf×sin20°)(14in)((14in)2(30in)2)+(750lbf×cos20°)(9in)(30in)2]=0.01039rad0.0104rad

Thus, the slope of the shaft at bearing point O along y-axis is 0.0104rad.

Substitute 0.00751rad for (θO)z and 0.0104rad for (θO)y in Equation (V).

    ΘO=(0.00751rad)2+(0.0104rad)2=0.01283rad0.0128rad

Thus, the net slope of the shaft at bearing point O is 0.0128rad.

Substitute 300lbf for FA, 16in for a1, 30in for l, 30×106psi for E, 0.1198in4 for I, 750lbf for FB and 9in for a2 in Equation (VI).

    (θC)z=16(30×106psi)(0.1198in4)(30)[(300lbf×cos20°)(16in)((30in)2(16in)2)2(750lbf×sin20°)(9in)(30in)2]=0.0109rad

Thus, the slope of the shaft at bearing point C along z-axis is 0.0109rad.

Substitute 300lbf for FA, 16in for b1, 30in for l, 30×106psi for E, 0.1198in4 for I, 750lbf for FB and 9in for a2 in Equation (VII).

    (θC)y=16(30×106psi)(0.1198in4)(30)[(300lbf×sin20°)(16in)((30in)2(16in)2)2(750lbf×cos20°)(9in)(30in)2]=0.0193rad

Thus, the slope of the shaft at bearing point O along y-axis is 0.0193rad.

Substitute 0.0109rad for (θC)z and 0.0193rad for (θC)y in Equation (VIII).

    ΘC=(0.0109rad)2+(0.0193rad)2=0.02216rad0.0222rad

Thus, the net slope of the shaft at bearing point C is 0.0222rad.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.
please help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoa
Solve this problem and show all of the work

Chapter 4 Solutions

Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)

Ch. 4 - A simply supported beam loaded by two forces is...Ch. 4 - Using superposition, find the deflection of the...Ch. 4 - A rectangular steel bar supports the two...Ch. 4 - An aluminum tube with outside diameter of 2 in and...Ch. 4 - The cantilever shown in the figure consists of two...Ch. 4 - Using superposition for the bar shown, determine...Ch. 4 - A simply supported beam has a concentrated moment...Ch. 4 - Prob. 18PCh. 4 - Using the results of Prob. 418, use superposition...Ch. 4 - Prob. 20PCh. 4 - Consider the uniformly loaded simply supported...Ch. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - 429 to 434 For the steel countershaft specified in...Ch. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - For the steel countershaft specified in the table,...Ch. 4 - For the steel countershaft specified in the table,...Ch. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - The cantilevered handle in the figure is made from...Ch. 4 - Prob. 42PCh. 4 - The cantilevered handle in Prob. 384, p. 154, is...Ch. 4 - A flat-bed trailer is to be designed with a...Ch. 4 - The designer of a shaft usually has a slope...Ch. 4 - Prob. 46PCh. 4 - If the diameter of the steel beam shown is 1.25...Ch. 4 - For the beam of Prob. 4-47, plot the magnitude of...Ch. 4 - Prob. 49PCh. 4 - 4-50 and 4-51 The figure shows a rectangular...Ch. 4 - and 451 the ground at one end and supported by a...Ch. 4 - The figure illustrates a stepped torsion-bar...Ch. 4 - Consider the simply supported beam 5 with a center...Ch. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Solve Prob. 410 using singularity functions. Use...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Solve Prob. 413 using singularity functions. Since...Ch. 4 - Prob. 61PCh. 4 - Solve Prob. 419 using singularity functions to...Ch. 4 - Using singularity functions, write the deflection...Ch. 4 - Determine the deflection equation for the...Ch. 4 - Use Castiglianos theorem to verify the maximum...Ch. 4 - Use Castiglianos theorem to verify the maximum...Ch. 4 - Solve Prob. 415 using Castiglianos theorem.Ch. 4 - Solve Prob. 452 using Castiglianos theoremCh. 4 - Determine the deflection at midspan for the beam...Ch. 4 - Using Castiglianos theorem, determine the...Ch. 4 - Solve Prob. 441 using Castiglianos theorem. Since...Ch. 4 - Solve Prob. 442 using Castiglianos theorem.Ch. 4 - The cantilevered handle in Prob. 384 is made from...Ch. 4 - Solve Prob. 450 using Castiglianos theorem.Ch. 4 - Solve Prob. 451 using Castiglianos theorem.Ch. 4 - The steel curved bar shown has a rectangular cross...Ch. 4 - Repeat Prob. 476 to find the vertical deflection...Ch. 4 - For the curved steel beam shown. F = 6.7 kips....Ch. 4 - A steel piston ring has a mean diameter of 70 mm....Ch. 4 - For the steel wire form shown, use Castiglianos...Ch. 4 - 4-81 and 4-82 The part shown is formed from a...Ch. 4 - 4-81 and 4-82 The part shown is formed from a...Ch. 4 - Repeat Prob. 481 for the vertical deflection at...Ch. 4 - Repeat Prob. 482 for the vertical deflection at...Ch. 4 - A hook is formed from a 2-mm-diameter steel wire...Ch. 4 - The figure shows a rectangular member OB, made...Ch. 4 - Prob. 87PCh. 4 - For the wire form shown, determine the deflection...Ch. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Solve Prob. 492 using Castiglianos method and...Ch. 4 - An aluminum step bar is loaded as shown. (a)...Ch. 4 - The steel shaft shown in the figure is subjected...Ch. 4 - Repeat Prob. 495 with the diameters of section OA...Ch. 4 - The figure shows a 12- by 1-in rectangular steel...Ch. 4 - For the beam shown, determine the support...Ch. 4 - Solve Prob. 498 using Castiglianos theorem and...Ch. 4 - Consider beam 13 in Table A9, but with flexible...Ch. 4 - Prob. 101PCh. 4 - The steel beam ABCD shown is simply supported at C...Ch. 4 - Prob. 103PCh. 4 - A round tubular column has outside and inside...Ch. 4 - For the conditions of Prob. 4104, show that...Ch. 4 - Link 2, shown in the figure, is 25 mm wide, has...Ch. 4 - Link 3, shown schematically in the figure, acts as...Ch. 4 - The hydraulic cylinder shown in the figure has a...Ch. 4 - The figure shows a schematic drawing of a...Ch. 4 - If drawn, a figure for this problem would resemble...Ch. 4 - Design link CD of the hand-operated toggle press...Ch. 4 - Find the maximum values of the spring force and...Ch. 4 - As shown in the figure, the weight W1 strikes W2...Ch. 4 - Part a of the figure shows a weight W mounted...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Solids: Lesson 53 - Slope and Deflection of Beams Intro; Author: Jeff Hanson;https://www.youtube.com/watch?v=I7lTq68JRmY;License: Standard YouTube License, CC-BY