Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 9P
To determine
The proof for the number of different electron states possible for a given vale of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can nuclei of the same element have different values of Z? Of N? Of A? Can nuclei of different elements have the same values of Z? Of N? Of A?
(i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in the
actual number with the unit of [eV]. We consider a transition that electron in the 3p state emits
a photon and make a transition to the 2s state. What is the frequency v of this photon ?
(ii) Now we do not include electron spin angular momentum, and just estimate an effect of a
magnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum.
How many lines of optical transition do we expect ? What is the interval of the frequency in the
field B = 0.1 Tesla ?
(iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the
3s state, Explain the reason.
(iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but a
free electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman)
levels. Obtain the level difference in the unit of [eV] from the value of…
(a) Determine the wavelength of the second Balmerline (n=4 to n=2 transition) using Fig. 27–29. Determine likewise (b) the wavelength of the second Lyman line and (c) the wavelength of the third Balmer line.
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.2 - Prob. 1AECh. 39.2 - Prob. 1BECh. 39.3 - Prob. 1CECh. 39.4 - Prob. 1DECh. 39.4 - Prob. 1EECh. 39.5 - Prob. 1FECh. 39.7 - Prob. 1GECh. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3Q
Ch. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10QCh. 39 - Prob. 11QCh. 39 - On what factors does the periodicity of the...Ch. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 16QCh. 39 - Prob. 17QCh. 39 - Prob. 18QCh. 39 - Prob. 19QCh. 39 - Prob. 20QCh. 39 - Prob. 21QCh. 39 - Prob. 22QCh. 39 - Prob. 23QCh. 39 - Prob. 24QCh. 39 - Prob. 25QCh. 39 - Prob. 26QCh. 39 - Prob. 27QCh. 39 - Prob. 28QCh. 39 - Prob. 29QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61GPCh. 39 - Prob. 62GPCh. 39 - Prob. 63GPCh. 39 - Prob. 64GPCh. 39 - Prob. 65GPCh. 39 - Prob. 66GPCh. 39 - Prob. 67GPCh. 39 - Prob. 68GPCh. 39 - Prob. 69GPCh. 39 - Prob. 70GPCh. 39 - Prob. 71GPCh. 39 - Prob. 72GPCh. 39 - Prob. 73GPCh. 39 - Prob. 74GPCh. 39 - Prob. 75GPCh. 39 - Prob. 76GPCh. 39 - Prob. 77GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding Can the magnitude of Lzever be equal to L?arrow_forwardPhotoarrow_forward(2) In this experiment, why couldn't we observe the series of spectral lines that arise from electrons falling to the ground state, nfinal = 1? This is the Lyman series, for which 22 (see eq. (16)) must be replaced by 12 in both the numerator and denominator of the equation: 2 =- 1 n2 n = R (n2-1)' 2,3,4,5, ..arrow_forward
- Show that the maximum number of electron states the nth shell of an atom is 2n2.arrow_forwardCheck Your Understanding If the Stem-Gerlach experiment yielded four distinct bands instead of two, what might be concluded about the spin quantum number of the charged particle?arrow_forwardDiscuss the main difference between an SEM and a TEM.arrow_forward
- What is the probability that the Is electron of hydrogen atom is found between r = 0 and r= ?arrow_forwardDo the Balmer series and the Lyman series overlap? Why? Why not? (Hint: calculate the shortest Balmer line and the longest Lyman line.)arrow_forwardIt has been measured that it required 0.850 eV to remove an electron from the hydrogen atom. In what state was the atom before the ionization happened?arrow_forward
- If an atom has an election in the n = 5 state with m = 3, what are the possible values of l?arrow_forward(a)Calculate the radius (in m) of the orbit for the innermost electron in osmium assuming it is relatively unaffected by the atom's other electrons. Answer in m (b)What is the ratio of this orbital radius to the 6.90 fm radius of the osmium nucleus? answer in relectron Inucleus answer in R electron/R nucluesarrow_forwardWhat is the probability of finding an electron in the 1s orbital within 0.60 Å of the nucleus of 27 kg)? an He* ion (assume the mass of the He nucleus is 6.68-10-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill