Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 77GP
(a)
To determine
The fraction of
(b)
To determine
The fraction of
(c)
To determine
The number of
(d)
To determine
The number of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The population ratio between two energy levels
ni
nj
separated in energy by:
A E = E₁ - Ej
with AE = 1.1×10-22 J is 0.84. That is:
ni
= 0.84 with AE = 1.1×10-22]
nj
Remember the Boltzmann equation for the population of particles in state i with energy Ei at temperature T is:
N
n₁ = = e
Z
What is the temperature of the system (use two sig figs)?
4.0 ✓
K
Plz solve in 30 min I vill definitely upvote and positive rating
(a) Compute the Clebsch-Gordan coefficients for the states with J
Ji + J2, M = m1 + m2, where ji
for the various possible m1 and m2 values.
(b) Consider the reactions:
1 and j2 = 1/2, and j = 3/2, M = 1/2
%3|
n*p + n*p
(i)
(ii)
(iii)
These reactions, which conserve isospin, can occur in the isospin I = 3/2
state (A resonance ) or the I
ratios of these cross-sections, ơ¡ : Oii : ơiii, for an encrgy corresponding to
1/2 state (N* resonance). Calculate the
a A resonance and an N* resonance respectivcly. At a resonance energy
you can neglect the effect due to the other isospin states. Note that the
pion is an isospin I
= 1 state and the nucleo1n an isospin I = 1/2 state.
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.2 - Prob. 1AECh. 39.2 - Prob. 1BECh. 39.3 - Prob. 1CECh. 39.4 - Prob. 1DECh. 39.4 - Prob. 1EECh. 39.5 - Prob. 1FECh. 39.7 - Prob. 1GECh. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3Q
Ch. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10QCh. 39 - Prob. 11QCh. 39 - On what factors does the periodicity of the...Ch. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 16QCh. 39 - Prob. 17QCh. 39 - Prob. 18QCh. 39 - Prob. 19QCh. 39 - Prob. 20QCh. 39 - Prob. 21QCh. 39 - Prob. 22QCh. 39 - Prob. 23QCh. 39 - Prob. 24QCh. 39 - Prob. 25QCh. 39 - Prob. 26QCh. 39 - Prob. 27QCh. 39 - Prob. 28QCh. 39 - Prob. 29QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61GPCh. 39 - Prob. 62GPCh. 39 - Prob. 63GPCh. 39 - Prob. 64GPCh. 39 - Prob. 65GPCh. 39 - Prob. 66GPCh. 39 - Prob. 67GPCh. 39 - Prob. 68GPCh. 39 - Prob. 69GPCh. 39 - Prob. 70GPCh. 39 - Prob. 71GPCh. 39 - Prob. 72GPCh. 39 - Prob. 73GPCh. 39 - Prob. 74GPCh. 39 - Prob. 75GPCh. 39 - Prob. 76GPCh. 39 - Prob. 77GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In discussing molecular rotation, the quantum num- ber J is used rather than 7. Using the Boltzmann distribution, calculate nj/no for ¹H³5Cl for J = 0, 5, 10, and 20 at T = 1025 K. Does ny/no go through a maximum as J increases? If so, what can you say about the value of J corre- sponding to the maximum?arrow_forwardAt what temperature (expressed as a fraction of Tc) is Bc = 0.25Bc(0), according to the BCS theory? [Note: Bc(0) is the critical fi eld at temperature T = 0.] Repeat for Bc = 0.50 Bc(0) and Bc = 0.75Bc(0).arrow_forward(a) The Einstein A coefficient of the 3p² ³P1/2 →3s² ³S₁/2 transition in sodium is 6.14 x 107 s¹. A gas of sodium atoms is excited to the 3p23P1/2 level at time t = 0. What fraction of the atoms are still in the upper level after 20 ns ?arrow_forward
- Bose-Einstein condensates of rubidium have reached temperatures of 20 nK. Treating rubidium as an ideal gas, fi nd the rms speed of a rubidium atom at that temperature. (Assume the most common isotope 85Rb.) Repeat for a Bose-Einstein condensate of sodium, using its lowest measured temperature of 450 pK.arrow_forwardProblem 2: Consider four independent magnetic atoms in a magnetic field B parallel to z axis at temperature T. The energy of single magnetic atom is E = –m.B. The magnetic moment of a single atom can take only on one of the two values: mz = ±mo. (a) Calculate the partition function (b) What are the probabilities of finding the six atoms in the state of total magnetization M, = D = -4mo, 0, 4mo correspondingly?arrow_forwardUse the Saha equation to determine the fraction of Hydrogen atoms that are ionized Nu/Ntotal at the center of the Sun, where the temperature is 15.7 million K and the electron number density is ne=6.1x1031 /m³. Don't try to compare your result with actual data, as your result will be lower due to not taking the pressure into account. Since most of the neutral H atoms are in the ground state, use Zrdegeneracy3D2 and, since a H ion is just a proton, Zı=1. Also, use XI=13.6 eV.arrow_forward
- 1-5. In a strictly steady state situation, both the ions and the electrons will follow the Boltzmann relation n; = no exp (-4,6/KT,) For the case of an infinite, transparent grid charged to a potential 6, show that the shielding distance is then given approximately by ne 1 AD €o KT, KT,. Show that Ap is determined by the temperature of the colder species.arrow_forward(a) Compute the escape speed of a particle from the Earth’s surface. Earth’s radius is 6378 km, and its mass is 5.98 x 1024 kg. (b) Find the mean speed for a helium atom at a temperature of 293 K. (c) Comment on the fact that your answer to (b) is less than the answer to (a). Why then does helium not remain in the atmosphere in signifi cant quantities?arrow_forwardFor an ideal gas O2 at T = 293 K fi nd the two speeds v that satisfy the equation 2F(v) = F(v*). Which of the two speeds you found is closer to v*? Does this make sense?arrow_forward
- The number of silicon atoms per m3 is 5 × 1028. This is doped simultaneously with 5 × 1022 atoms per m3 of Arsenic and 5 × 1020 per m3 atoms of Indium. Calculate the number of electrons and holes. Given that ni = 1.5 × 1016 m-3. Is the material n-type or p-type?arrow_forward475 cm /volt-s, and E, = 1.1 eV, 6? Given these data for Si: 4, = 1350 cm/volt-s, H calculate the following. a) The lifetimes for the electron and for the hole. b) The intrinsic conductivity a at room temperature. c) The temperature dependence of o, assuming that electron collision is dominated by phonon scattering, and plot log o versus 1/T. %3D 7. Repeat Problem 6 for Ge, using Tables 6 L and 6 ?arrow_forward(4) Electronic energy level of a hydrogen atom is given by R ; п %3D 1,2, 3,... n2 E = - and R = 13.6 eV. Each energy level has degeneracy 2n2 (degeneracy is the number of equivalent configurations associated with the energy level). (a) Derive the partition function for a hydrogen atom at a constant temperature. (b) Consider that the energy level of a hydrogen atom is approximated by a two level system, n = 1,2. Estimate the mean energy at 300 K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON