Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
Question
Book Icon
Chapter 39, Problem 8P

(a)

To determine

The prove that the number of different states possible for a given value of l is equal to 2(2l+1).

(b)

To determine

The number of different states possible for l=0,1,2,3,4,5, and 6.

Blurred answer
Students have asked these similar questions
(i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in the actual number with the unit of [eV]. We consider a transition that electron in the 3p state emits a photon and make a transition to the 2s state. What is the frequency v of this photon ? (ii) Now we do not include electron spin angular momentum, and just estimate an effect of a magnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum. How many lines of optical transition do we expect ? What is the interval of the frequency in the field B = 0.1 Tesla ? (iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the 3s state, Explain the reason. (iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but a free electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman) levels. Obtain the level difference in the unit of [eV] from the value of…
(i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in theactual number with the unit of [eV]. We consider a transition that electron in the 3p state emitsa photon and make a transition to the 2s state. What is the frequency ν of this photon ?(ii) Now we do not include electron spin angular momentum, and just estimate an effect of amagnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum.How many lines of optical transition do we expect ? What is the interval of the frequency in thefield B = 0.1 Tesla ?(iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the3s state, Explain the reason.(iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but afree electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman)levels. Obtain the level difference in the unit of [eV] from the value of magnetic…
(3) Calculate (x²) for in the quantum state {n = 2, l = 1, m = average can be expressed more simply as (2,1,1|x2|2,1,1) where the ket |n, l, m) defines the quantum state 1} for a hydrogen atom. Notice that this of a hydrogen atom, but, as done in class, the spin quantum number is not included.

Chapter 39 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10QCh. 39 - Prob. 11QCh. 39 - On what factors does the periodicity of the...Ch. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 16QCh. 39 - Prob. 17QCh. 39 - Prob. 18QCh. 39 - Prob. 19QCh. 39 - Prob. 20QCh. 39 - Prob. 21QCh. 39 - Prob. 22QCh. 39 - Prob. 23QCh. 39 - Prob. 24QCh. 39 - Prob. 25QCh. 39 - Prob. 26QCh. 39 - Prob. 27QCh. 39 - Prob. 28QCh. 39 - Prob. 29QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61GPCh. 39 - Prob. 62GPCh. 39 - Prob. 63GPCh. 39 - Prob. 64GPCh. 39 - Prob. 65GPCh. 39 - Prob. 66GPCh. 39 - Prob. 67GPCh. 39 - Prob. 68GPCh. 39 - Prob. 69GPCh. 39 - Prob. 70GPCh. 39 - Prob. 71GPCh. 39 - Prob. 72GPCh. 39 - Prob. 73GPCh. 39 - Prob. 74GPCh. 39 - Prob. 75GPCh. 39 - Prob. 76GPCh. 39 - Prob. 77GP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning