Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 34P
To determine
The binding energy of the third electron in lithium using Bohr energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a)
The Lyman series in hydrogen is the transition from energy levels n = 2, 3, 4, ...
to the ground state n =
1. The energy levels are given by
13.60 eV
En
n-
(i)
What is the second longest wavelength in nm of the Lyman series?
(ii)
What is the series limit of the Lyman series?
[1 eV = 1.602 x 1019 J, h = 6.626 × 10-34 J.s, c = 3 × 10° m.s]
%3D
Two emission lines have wavelengts A and + A2, respectively, where AA <<2.
Show that the angular separation A0 in a grating spectrometer is given
aproximately by
(b)
A0 =
V(d/m)-2
where d is the grating constant and m is the order at which the lines are observed.
(i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in the
actual number with the unit of [eV]. We consider a transition that electron in the 3p state emits
a photon and make a transition to the 2s state. What is the frequency v of this photon ?
(ii) Now we do not include electron spin angular momentum, and just estimate an effect of a
magnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum.
How many lines of optical transition do we expect ? What is the interval of the frequency in the
field B = 0.1 Tesla ?
(iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the
3s state, Explain the reason.
(iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but a
free electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman)
levels. Obtain the level difference in the unit of [eV] from the value of…
(6) (a) Show that the speed of an electron in the nth Bohr orbit of hydrogen is ac/n where a is the
fine structure constant.
(b) What would be the speed in a hydrogenlike atom with a nuclear charge of Ze?
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.2 - Prob. 1AECh. 39.2 - Prob. 1BECh. 39.3 - Prob. 1CECh. 39.4 - Prob. 1DECh. 39.4 - Prob. 1EECh. 39.5 - Prob. 1FECh. 39.7 - Prob. 1GECh. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3Q
Ch. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10QCh. 39 - Prob. 11QCh. 39 - On what factors does the periodicity of the...Ch. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 16QCh. 39 - Prob. 17QCh. 39 - Prob. 18QCh. 39 - Prob. 19QCh. 39 - Prob. 20QCh. 39 - Prob. 21QCh. 39 - Prob. 22QCh. 39 - Prob. 23QCh. 39 - Prob. 24QCh. 39 - Prob. 25QCh. 39 - Prob. 26QCh. 39 - Prob. 27QCh. 39 - Prob. 28QCh. 39 - Prob. 29QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61GPCh. 39 - Prob. 62GPCh. 39 - Prob. 63GPCh. 39 - Prob. 64GPCh. 39 - Prob. 65GPCh. 39 - Prob. 66GPCh. 39 - Prob. 67GPCh. 39 - Prob. 68GPCh. 39 - Prob. 69GPCh. 39 - Prob. 70GPCh. 39 - Prob. 71GPCh. 39 - Prob. 72GPCh. 39 - Prob. 73GPCh. 39 - Prob. 74GPCh. 39 - Prob. 75GPCh. 39 - Prob. 76GPCh. 39 - Prob. 77GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . (II) Estimate the wavelength for an n = 3 to n = 2 transition in iron (Z = 26).arrow_forward(II) For each of the following atomic transitions, state whether the transition is allowed or forbidden, and why: (a) 4p → 3p; (b) 3p → 1s; (c) 4d → 2d; (d) 5d → 3s; (e) 4s → 2p.arrow_forwardIf the magnetic dipole moment of an atom is 1*10 ^24J/T, then this atom has a magnetic field of 10 Thow much does the potential energy change when placed?arrow_forward
- The ionization (binding) energy of the outermost electronin boron is 8.26 eV. (a) Use the Bohr model to estimate the“effective charge,”Zeff seen by this electron. (b) Estimatethe average orbital radius.arrow_forward(i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in theactual number with the unit of [eV]. We consider a transition that electron in the 3p state emitsa photon and make a transition to the 2s state. What is the frequency ν of this photon ?(ii) Now we do not include electron spin angular momentum, and just estimate an effect of amagnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum.How many lines of optical transition do we expect ? What is the interval of the frequency in thefield B = 0.1 Tesla ?(iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the3s state, Explain the reason.(iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but afree electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman)levels. Obtain the level difference in the unit of [eV] from the value of magnetic…arrow_forward(2) In this experiment, why couldn't we observe the series of spectral lines that arise from electrons falling to the ground state, nfinal = 1? This is the Lyman series, for which 22 (see eq. (16)) must be replaced by 12 in both the numerator and denominator of the equation: 2 =- 1 n2 n = R (n2-1)' 2,3,4,5, ..arrow_forward
- Calculate the wavelength of the Mo(Z = 42)K« X-ray line given that the ionization energy of hydrogen is 13.6 eV [Adapted from the University of London, Royal Holloway 2002]arrow_forwardA sodium atom (Z = 11) contains 11 protons in its nucleus. Strictly speaking, the Bohr model does not apply, because the neutral atom contains 11 electrons instead of a single electron. However, we can apply the model to the outermost electron as an approximation, provided that we use an effective value Zeffective rather than 11 for the number of protons in the nucleus. (a) The ionization energy for the outermost electron in a sodium atom is 5.1 eV. Use the Bohr model with Z = Zeffective to calculate a value for Zeffective. (b) Using Z = 11, determine the corresponding value for the radius r of the outermost Bohr orbit. (c) Using the value calculated for Zeffective in part (a), determine the corresponding radius r of the outermost Bohr orbit. (a) Zeffective = Number i 2.04 (b) _r= (c)_r= Number i 5.29E-11 Number i 2.12E-11 Units No units Units m Units m ♥arrow_forwardAssuming that only a single electron is present and a Bohr model, calculate the mean radius, orbital velocity, and energy of a N=1 electron of hydrogen N=4 electron for lead N=1 electron for plutonium N=1 electron for an element with Z = 142arrow_forward
- (a) Show that the speed of an electron in the nth Bohr orbit of hydrogen is αc/n, where α is the fine structure constant, equal to e2/4πε0ħc. (b) What would be the speed in a hydrogen like atom with a nuclear charge of Ze?arrow_forwardThe wavelengths of the Lyman series for hydrogen are given by: = RH(1-1), n = 2, 3, 4, ... For the second of this series; calculate the energy (in eV). Note: 1.60 x 10^-19 J = 1.0 eV O 4.10 x 10^3 eV 2.12 x 10^3 eV 3² O 1.21 x 10^3 eV 3.30 x 10^3 eVarrow_forwardSuppose two electrons in an atom have quantum numbers n = 7 and e = 5. (a) How many states are possible for those two electrons? (Keep in mind that the electrons are indistinguishable.) (b) If the Pauli exclusion did not apply to the electrons, how many states would be possible?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning