Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 47P
To determine
The energy difference between the states
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in theactual number with the unit of [eV]. We consider a transition that electron in the 3p state emitsa photon and make a transition to the 2s state. What is the frequency ν of this photon ?(ii) Now we do not include electron spin angular momentum, and just estimate an effect of amagnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum.How many lines of optical transition do we expect ? What is the interval of the frequency in thefield B = 0.1 Tesla ?(iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the3s state, Explain the reason.(iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but afree electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman)levels. Obtain the level difference in the unit of [eV] from the value of magnetic…
(i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in the
actual number with the unit of [eV]. We consider a transition that electron in the 3p state emits
a photon and make a transition to the 2s state. What is the frequency v of this photon ?
(ii) Now we do not include electron spin angular momentum, and just estimate an effect of a
magnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum.
How many lines of optical transition do we expect ? What is the interval of the frequency in the
field B = 0.1 Tesla ?
(iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the
3s state, Explain the reason.
(iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but a
free electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman)
levels. Obtain the level difference in the unit of [eV] from the value of…
JC-59) Stern-Gerlach Revisited
Suppose the silver atoms in the Stern-Gerlach experiment traveled horizontally, first 1 m
through the magnet and then after exiting the magnet, 1 m in a field-free region at a speed of 250 m/s.
What must have been the gradient of Bz, dB/dz, in order that the beams each be deflected a maximum of
0.5 mm from the central position?
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.2 - Prob. 1AECh. 39.2 - Prob. 1BECh. 39.3 - Prob. 1CECh. 39.4 - Prob. 1DECh. 39.4 - Prob. 1EECh. 39.5 - Prob. 1FECh. 39.7 - Prob. 1GECh. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3Q
Ch. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10QCh. 39 - Prob. 11QCh. 39 - On what factors does the periodicity of the...Ch. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 16QCh. 39 - Prob. 17QCh. 39 - Prob. 18QCh. 39 - Prob. 19QCh. 39 - Prob. 20QCh. 39 - Prob. 21QCh. 39 - Prob. 22QCh. 39 - Prob. 23QCh. 39 - Prob. 24QCh. 39 - Prob. 25QCh. 39 - Prob. 26QCh. 39 - Prob. 27QCh. 39 - Prob. 28QCh. 39 - Prob. 29QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61GPCh. 39 - Prob. 62GPCh. 39 - Prob. 63GPCh. 39 - Prob. 64GPCh. 39 - Prob. 65GPCh. 39 - Prob. 66GPCh. 39 - Prob. 67GPCh. 39 - Prob. 68GPCh. 39 - Prob. 69GPCh. 39 - Prob. 70GPCh. 39 - Prob. 71GPCh. 39 - Prob. 72GPCh. 39 - Prob. 73GPCh. 39 - Prob. 74GPCh. 39 - Prob. 75GPCh. 39 - Prob. 76GPCh. 39 - Prob. 77GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Determine the integral | P(r) dr for the radial probability density for the ground state of the hydrogen atom 4 P(r) = - r²e-2rla a³ O 1 O-1 O 0.5arrow_forward(3) Calculate (x²) for in the quantum state {n = 2, l = 1, m = average can be expressed more simply as (2,1,1|x2|2,1,1) where the ket |n, l, m) defines the quantum state 1} for a hydrogen atom. Notice that this of a hydrogen atom, but, as done in class, the spin quantum number is not included.arrow_forward(a) The Lyman series in hydrogen is the transition from energy levels n = 2, 3, 4, ... to the ground state n = 1. The energy levels are given by 13.60 eV En n- (i) What is the second longest wavelength in nm of the Lyman series? (ii) What is the series limit of the Lyman series? [1 eV = 1.602 x 1019 J, h = 6.626 × 10-34 J.s, c = 3 × 10° m.s] %3D Two emission lines have wavelengts A and + A2, respectively, where AA <<2. Show that the angular separation A0 in a grating spectrometer is given aproximately by (b) A0 = V(d/m)-2 where d is the grating constant and m is the order at which the lines are observed.arrow_forward
- JC-42) Probability to Find an Electron An electron in its ground state is trapped in the 1D Coulomb potential energy. What is the 0.99ao and x = probability to find it in the region between x = 1.01ao?arrow_forward(a) How many angles can L make with the z -axis for an l = 2 electron? (b) Calculate the value of the smallest angle.arrow_forwardProblem 63. 64 Martian CO, laser. Where sunlight shines on the atmosphere E = 0.289 eV of Mars, carbon dioxide mole- cules at an altitude of about 75 km undergo natural laser action. The energy levels involved in the action are shown in Fig. 40-26; population inversion occurs be- tween energy levels E, and E. (a) What wavelength of sunlight E = 0.165 ev E =0 excites the molecules in the las- Figure 40-26 Problem 64. ing action? (b) At what wave- length does lasing occur? (c) In what region of the electromag- netic spectrum do the excitation and lasing wavelengths lie?arrow_forward
- (II) Is the use of nonrelativistic formulas justified in the Bohr atom? To check, calculate the electron's velocity, v, in terms of c, for the ground state of hydrogen, and then calculate V1 - v²/c².arrow_forward(ii):Find the ground state L and S of oxygen (Z=8). Also find the matter wave associated with 111 MeV α-particles. Moreover, using L-S coupling find the ground state term for nd8 .arrow_forwardWhile studying the spectrumn of a gas doud in space, an astronomer magnifies a spectral line that results from a transition from a p state to an s state, She finds that the line at 575.050 nm has actually split into three lines, with adjacent lines 4.70 x 10- nm apart, indicating that the gas is in an external magnetic field. (Ignore effects due to electron spin.) What is the strength of the external magnetic field? O B=3.25 T OB-2.98 T O B=2.79 T O B=3.05 T OB=2.05 Tarrow_forward
- (a) Determine the wavelength of the second Balmerline (n=4 to n=2 transition) using Fig. 27–29. Determine likewise (b) the wavelength of the second Lyman line and (c) the wavelength of the third Balmer line.arrow_forward(i) In hydrogen atom, an electron undergoes transition from 2nd excited state to the first excited state and then to the ground state. Identify the spectral series to which these transitions belong. (ii) Find out the ratio of the wavelengths of the emitted radiations in the two cases.arrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning