Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 59P
To determine
The required temperature of the system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
None
calculate The Pot ential of the p-n
divider created in the re st from two
22
parches, one containing
3.
donor atoms and the other Cont ain9
18
corresponding atoms at
rom temperature if you knou that
hi
=1.9*10/m
ut
3b.1. Show that the heat capacity at the high T limit and the low T limit are:
at high T:
→ Cv = 3R
at low T:
E
T
ⒸE
1
-> 0
2
² (5) *exp(-OF)
→ Cv (T) ≈ 3R
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.2 - Prob. 1AECh. 39.2 - Prob. 1BECh. 39.3 - Prob. 1CECh. 39.4 - Prob. 1DECh. 39.4 - Prob. 1EECh. 39.5 - Prob. 1FECh. 39.7 - Prob. 1GECh. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3Q
Ch. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10QCh. 39 - Prob. 11QCh. 39 - On what factors does the periodicity of the...Ch. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 16QCh. 39 - Prob. 17QCh. 39 - Prob. 18QCh. 39 - Prob. 19QCh. 39 - Prob. 20QCh. 39 - Prob. 21QCh. 39 - Prob. 22QCh. 39 - Prob. 23QCh. 39 - Prob. 24QCh. 39 - Prob. 25QCh. 39 - Prob. 26QCh. 39 - Prob. 27QCh. 39 - Prob. 28QCh. 39 - Prob. 29QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61GPCh. 39 - Prob. 62GPCh. 39 - Prob. 63GPCh. 39 - Prob. 64GPCh. 39 - Prob. 65GPCh. 39 - Prob. 66GPCh. 39 - Prob. 67GPCh. 39 - Prob. 68GPCh. 39 - Prob. 69GPCh. 39 - Prob. 70GPCh. 39 - Prob. 71GPCh. 39 - Prob. 72GPCh. 39 - Prob. 73GPCh. 39 - Prob. 74GPCh. 39 - Prob. 75GPCh. 39 - Prob. 76GPCh. 39 - Prob. 77GP
Knowledge Booster
Similar questions
- (1) for A, C & D 3RD SIGNIICANCE BUT FOR B, EXACT NO TOLERANCE. ANSWER ALSO E PLSarrow_forward(ii) (a) Show that the emission linewidth Aλ of an LED is given approximately by 2kT2² Δλ = coh where > is the wavelength and I is the absolute temperature in Kelvin. You should clearly state any approximations made. (b) Estimate A for an LED operating at λ = 1.3 µm and at 27 °C.arrow_forwardIn discussing molecular rotation, the quantum num- ber J is used rather than 7. Using the Boltzmann distribution, calculate nj/no for ¹H³5Cl for J = 0, 5, 10, and 20 at T = 1025 K. Does ny/no go through a maximum as J increases? If so, what can you say about the value of J corre- sponding to the maximum?arrow_forward
- (c) For a monatomic perfect gas with a non-degenerate electronic ground state show that at room temperature (ɛ) = 3kT/2. State any assumptions that you make.arrow_forwardThe population ratio between two energy levels ni nj separated in energy by: A E = E₁ - Ej with AE = 1.1×10-22 J is 0.84. That is: ni = 0.84 with AE = 1.1×10-22] nj Remember the Boltzmann equation for the population of particles in state i with energy Ei at temperature T is: N n₁ = = e Z What is the temperature of the system (use two sig figs)? 4.0 ✓ Karrow_forwardA fermion gas assembly consists of three energy bands whose weights are 2, 3 and 4, respectively. Particles were distributed over them so that the slides were occupied by 1, 2 and 3 particles, respectively. In this case the weight of the general situation O 19:43 AMarrow_forward
- at the temperature T=0 C, an aluminum ring has a circumference C=15cm whereas an iron cylinder has a circumference c= 15.05cm. what is the minimum common temperature we need to raise both metals to so that the cylinder can pass through the ring? (use for beta Al = 24*10-6 C-1 and beta Fe = 11*10-6 C-1 )arrow_forwardWhy doesn’t the total energy of a collection of fermions approach zero as the temperature approaches zero?arrow_forwardBoltzmann distribution a) There are 1000 molecules are bouncing at 300K between two wells separated by a free energy gap G1= 3 * 10-21 J. Calculate how many particles on average are in each well. Boltzmann constant k = 1.38 * 10-23 J/K b) 1000 molecules are bouncing between wells separated by enthalpy gapsH1= 1 *10-20 J and H2 = 2* 10-20 J. Considering multiplicities of each state write the partitionfunction and calculate the occupancies of states 2 and 3 at 300K and 370K.arrow_forward
- O:33)arrow_forwardExplain what happens at High temperature T>>θE and Low temperature T<arrow_forwardUnreasonable results. (a) Find the sped of hydrogen sulfide, H2S, molecules at a temperature of 250 K. Its molar mass is 31.4 g/mol (b) The result isn't very unreasonable, but why is it less reliable than those for, say, neon or nitrogen?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning