Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 40P
To determine
The proof that the cutoff wavelength
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) Show that the energy E (in electron volts) of a photon
whose wavelength is A (nm) is given by
1.240 x 10° eV·nm
E =
λ (nm)
Use at least 4 significant figures for values of h, c, e (see
inside front cover).
(ii) A silicon detector contains a photoconductive layer of thickness 1 = 20mm. The refractive index of silicon is 4 and the absorption coefficient (a) of silicon in cm-1 is given by a = 10(7-6000) where I is wavelength in Å. Calculate the wavelength at which the quantum efficiency loss due to penetration through the device is equal to that due to re- flection at the surface.
II) What is the maximum kinetic energy of electronsejected from barium(Wo = 2.48eV) when illuminated bywhite light,λ =400 to 750 nm?
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.2 - Prob. 1AECh. 39.2 - Prob. 1BECh. 39.3 - Prob. 1CECh. 39.4 - Prob. 1DECh. 39.4 - Prob. 1EECh. 39.5 - Prob. 1FECh. 39.7 - Prob. 1GECh. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3Q
Ch. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10QCh. 39 - Prob. 11QCh. 39 - On what factors does the periodicity of the...Ch. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 16QCh. 39 - Prob. 17QCh. 39 - Prob. 18QCh. 39 - Prob. 19QCh. 39 - Prob. 20QCh. 39 - Prob. 21QCh. 39 - Prob. 22QCh. 39 - Prob. 23QCh. 39 - Prob. 24QCh. 39 - Prob. 25QCh. 39 - Prob. 26QCh. 39 - Prob. 27QCh. 39 - Prob. 28QCh. 39 - Prob. 29QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61GPCh. 39 - Prob. 62GPCh. 39 - Prob. 63GPCh. 39 - Prob. 64GPCh. 39 - Prob. 65GPCh. 39 - Prob. 66GPCh. 39 - Prob. 67GPCh. 39 - Prob. 68GPCh. 39 - Prob. 69GPCh. 39 - Prob. 70GPCh. 39 - Prob. 71GPCh. 39 - Prob. 72GPCh. 39 - Prob. 73GPCh. 39 - Prob. 74GPCh. 39 - Prob. 75GPCh. 39 - Prob. 76GPCh. 39 - Prob. 77GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (3) In order to study the atomic nucleus, we would like to observe the diffraction of particles whose de Broglie wavelength is about the same size as the nuclear diameter, about 14 fm for a heavy nucleus such as lead. What kinetic energy should we use if the diffracted particles are (a) electrons? (b) Neutrons? (c) Alpha particles (m = 4 u)?arrow_forward(b) (i) Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 1031 kg and a charge of 1.602 x 10-19 J with a Kinetic energy of 135 eV. The value of the Planck's constant is equal to 6.63 * 10-34 Js. (ii) Assume that an electron is moving along the x-axis with a speed of 3.66 x 106 m/s and with a precision of 0.50%. Calculate the minimum uncertainty (as allowed by the uncertainty principle in quantum theory) with which the position of the electron along the X-axis simultaneously can be measured with the speed?arrow_forwardFor x rays with wavelength 0.0300 nm, the m = 1 inten- sity maximum for a crystal occurs when the angle u in Fig. is 35.8°. At what angle u does the m = 1 maximum occur when a beam of 4.50 keV electrons is used instead? Assume that the electrons also scat- ter from the atoms in the surface plane of this same crystal.arrow_forward
- (b) Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 10-31 kg and a charge of 1.602 x 10-19 J with a Kinetic energy of 110 eV. The value of the Planck’s constant is equal to 6.63 * 10-34 Js.arrow_forward(b) Evaluate the ratio of the de Broglie wavelength of electron to that of proton when (m₂=9.11 × 10-3¹ kg, mp=1.67 × 10-27 kg) (i) both have the same kinetic energy. (ii) The electron kinetic energy is 1000 eV, and the proton kineticarrow_forward- (i) Calculate the Amin and Amax region of 70 kV X-ray tube. (ii) Calculate the maximum frequency of an X-ray caused by an electron travelling with 60000 eV of kinetic energy?arrow_forward
- (a) A simplified parabolic E-K diagram for an electron in the conduction band is given in Figure 3. Determine the relative effective mass, m'/m.. given the E – E. = C,k², value of a of 1 nm, Planck constant h = 6.625 × 10-34 J. s, free electron mass m, = 9.11 x 10-31 kg, electric charge q = 1.6 x 10-19 C and 1 eV = 1.6 x 10-19 J. E E = E,+0.32 eV Figure 3arrow_forward(c) The energy of an ultraviolet light is 3.28 eV. (i) What is its wavelength? (Given: h=6.63✕10-34 Js ; e=1.602✕10-19 C). (ii) Based on the de Broglie's hypothesis, determine the velocity of the electron. (Given: h=6.63✕10-34 Js ; me=9.11✕10-31 kg).arrow_forwardTyped onlyarrow_forward
- 2) a) A monochromator is used as shown in the setup below to obtain a single wavelength 2 = 1.5 Å X-ray from X-rays emitted from an X-ray source. The monochromator is made of Germanium single crystal. The Miller index of the planes in this Germanium single crystal is (111) and the distance between the planes is d11 = 1.2 Å. What is the value of the monochromator angle (0)? (scottered X-ray) Saçılan X-ışını elincedent X-ray) s ) (scattering angle Sacılma Açısı Gelen X-Işını Geliş Açısı Eieliş Dogrultusu (andeofincidence) direction of arrival) Kristal Düzlemleri (crystal planes) b) Calculate the energy of the X-ray with wavelength 2 = 1.5 Å in eV.arrow_forward(4) (i) Light shining on a metal surface produces photoelectrons with a maximum kinetic energy of 2.0 eV. The light intensity is then doubled. Now what is the maximum kinetic energy of the photoelectrons, in eV? (ii) The detector in an ordinary digital camera is made of silicon. This detector works by the photoelectric effect. The longest wavelength of light that an ordinary digital camera can detect has a wavelength of 1 micron (where 1 micron = 10^-6 m). What is the work function of silicon, in eV? (iii) Infrared cameras don't use detectors made of silicon. For an infrared camera to detect infrared radiation with a wavelength of 22 microns, its detector must be made of a dierent material. What is the maximum possible work function of this material, in eV?arrow_forward(a) A vacuum photocell is sequentially illuminated with light of different wavelengths 2. A voltmeter is used to determine that there is a different voltage between the cathode and the anode. V (iii) Determine a relation for Planck's constant in terms of pairs of voltage measurements at different wavelengths such that W₁ cancels out. (iv) Evaluate Planck's constant for the following pair of measurements: measurement 1 finds = 447 nm and V=635 mV, and measurement 2 finds = : 502 nm and V=339 mV.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill