Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 39, Problem 39.90CP
Suppose our Sun is about to explode. In an effort to escape, we depart in a spacecraft at v = 0.800c and head toward the star Tau Ceti, 12.0 ly away. When we reach the midpoint of our journey from the Earth, we see our Sun explode, and, unfortunately, at the same instant, we see Tau Ceti explode as well. (a) In the spacecraft’s frame of reference, should we conclude that the two explosions occurred simultaneously? If not, which occurred first? (b) What If? In a frame of reference in which the Sun and Tau Ceti are at rest, did they explode simultaneously? If not, which exploded first?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 39 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 39 - Which observer in Figure 38.1 sees the balls...Ch. 39 - A baseball pitcher with a 90-mi/h fastball throws...Ch. 39 - Suppose the observer O on the train in Figure 38.6...Ch. 39 - A crew on a spacecraft watches a movie that is two...Ch. 39 - Suppose astronauts are paid according to the...Ch. 39 - You are packing for a trip to another star. During...Ch. 39 - You are observing a spacecraft moving away from...Ch. 39 - You are driving on a freeway at a relativistic...Ch. 39 - The following pairs of energiesparticle 1: E, 2E;...Ch. 39 - (i) Does the speed of an electron have an upper...
Ch. 39 - A spacecraft zooms past the Earth with a constant...Ch. 39 - As a car heads down a highway traveling at a speed...Ch. 39 - A spacecraft built in the shape of a sphere moves...Ch. 39 - An astronaut is traveling in a spacecraft in outer...Ch. 39 - You measure the volume of a cube at rest to be V0....Ch. 39 - Two identical clocks are set side by side and...Ch. 39 - Prob. 39.8OQCh. 39 - Which of the following statements are fundamental...Ch. 39 - A distant astronomical object (a quasar) is moving...Ch. 39 - In several cases, a nearby star has been found to...Ch. 39 - Prob. 39.2CQCh. 39 - A train is approaching yon at very high speed as...Ch. 39 - List three ways our day-to-day lives would change...Ch. 39 - Prob. 39.5CQCh. 39 - Prob. 39.6CQCh. 39 - Prob. 39.7CQCh. 39 - Prob. 39.8CQCh. 39 - Give a physical argument that shows it is...Ch. 39 - Prob. 39.10CQCh. 39 - Prob. 39.11CQCh. 39 - (i) An object is plated at a position p f from a...Ch. 39 - With regard to reference frames, how does general...Ch. 39 - Two identical clocks are in the same house, one...Ch. 39 - The truck in Figure P39.1 is moving at a speed of...Ch. 39 - In a laboratory frame of reference, an observer...Ch. 39 - The speed of the Earth in its orbit is 29.8 km/s....Ch. 39 - Prob. 39.4PCh. 39 - Prob. 39.5PCh. 39 - A meterstick moving at 0.900c relative to the...Ch. 39 - Prob. 39.7PCh. 39 - A muon formed high in the Earths atmosphere is...Ch. 39 - How fast must a meterstick be moving if its length...Ch. 39 - An astronaut is traveling in a space vehicle...Ch. 39 - A physicist drives through a stop light. When he...Ch. 39 - A fellow astronaut passes by you in a spacecraft...Ch. 39 - A deep-space vehicle moves away from the Earth...Ch. 39 - For what value of does = 1.010 0? Observe that...Ch. 39 - A supertrain with a proper length of 100 m travels...Ch. 39 - The average lifetime of a pi meson in its own...Ch. 39 - An astronomer on the Earth observes a meteoroid in...Ch. 39 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 39 - A spacecraft with a proper length of 300 m passes...Ch. 39 - A spacecraft with a proper length of Lp passes by...Ch. 39 - A light source recedes from an observer with a...Ch. 39 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 39 - Police radar detects the speed of a car (Fig....Ch. 39 - The identical twins Speedo and Goslo join a...Ch. 39 - An atomic clock moves at 1 000 km/h for 1.00 h as...Ch. 39 - Prob. 39.26PCh. 39 - A red light flashes at position xR = 3.00 m and...Ch. 39 - Shannon observes two light pulses to be emitted...Ch. 39 - A moving rod is observed to have a length of =...Ch. 39 - A rod moving with a speed v along the horizontal...Ch. 39 - Keilah, in reference frame S, measures two events...Ch. 39 - Figure P38.21 shows a jet of material (at the...Ch. 39 - An enemy spacecraft moves away from the Earth at a...Ch. 39 - A spacecraft is launched from the surface of the...Ch. 39 - Prob. 39.35PCh. 39 - Calculate the momentum of an electron moving with...Ch. 39 - Prob. 39.37PCh. 39 - Prob. 39.38PCh. 39 - Prob. 39.39PCh. 39 - Prob. 39.40PCh. 39 - Prob. 39.41PCh. 39 - Prob. 39.42PCh. 39 - An unstable particle at rest spontaneously breaks...Ch. 39 - Prob. 39.44PCh. 39 - Prob. 39.45PCh. 39 - Protons in an accelerator at the Fermi National...Ch. 39 - A proton moves at 0.950c. Calculate its (a) rest...Ch. 39 - (a) Find the kinetic energy of a 78.0-kg...Ch. 39 - A proton in a high-energy accelerator moves with a...Ch. 39 - Prob. 39.50PCh. 39 - The total energy of a proton is twice its rest...Ch. 39 - Prob. 39.52PCh. 39 - When 1.00 g of hydrogen combines with 8.00 g of...Ch. 39 - In a nuclear power plain, the fuel rods last 3 yr...Ch. 39 - The power output of the Sun is 3.85 1026 W. By...Ch. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - The rest energy of an electron is 0.511 MeV. The...Ch. 39 - Prob. 39.60PCh. 39 - A pion at rest (m = 273me) decays to a muon (m =...Ch. 39 - An unstable particle with mass m = 3.34 1027 kg...Ch. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Review. A global positioning system (GPS)...Ch. 39 - Prob. 39.66APCh. 39 - The net nuclear fusion reaction inside the Sun can...Ch. 39 - Prob. 39.68APCh. 39 - A Doppler weather radar station broadcasts a pulse...Ch. 39 - An object having mass 900 kg and traveling at...Ch. 39 - An astronaut wishes to visit the Andromeda galaxy,...Ch. 39 - A physics professor on the Earth gives an exam to...Ch. 39 - An interstellar space probe is launched from...Ch. 39 - Prob. 39.74APCh. 39 - Prob. 39.75APCh. 39 - An object disintegrates into two fragments. One...Ch. 39 - The cosmic rays of highest energy are protons that...Ch. 39 - Spacecraft I. containing students taking a physics...Ch. 39 - Review. Around the core of a nuclear reactor...Ch. 39 - The motion of a transparent medium influences the...Ch. 39 - Prob. 39.81APCh. 39 - Prob. 39.82APCh. 39 - An alien spaceship traveling at 0.600c toward the...Ch. 39 - Prob. 39.84APCh. 39 - Prob. 39.85APCh. 39 - An observer in a coasting spacecraft moves toward...Ch. 39 - Prob. 39.87APCh. 39 - A particle with electric charge q moves along a...Ch. 39 - Prob. 39.89CPCh. 39 - Suppose our Sun is about to explode. In an effort...Ch. 39 - Owen and Dina are at rest in frame S. which is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forwardA spacecraft is launched from the surface of the Earth with a velocity of 0.600c at an angle of 50.0° above the horizontal, positive x-axis. Another spacecraft is moving past with a velocity of 0.700c in the negative x direction. Determine the magnitude and direction of the velocity of the first spacecraft as measured by the pilot of the second spacecraft.arrow_forwardOwen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forward
- Suppose the primed and laboratory observers want to measure the length of a rod that rests on the ground horizontally in the space between the helicopter and the tower (Fig. 39.8B). To derive the length transformation L = L (Eq. 39.5), we had to assume that the positions of the two ends were determined simultaneously. What happens to the length transformation equation if both observers measure the end below the helicopter at one time t1 and the other end at a later time t2?arrow_forwardJoe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forwardOwen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forward
- Spacecraft I, containing students taking a physics exam, approaches the Earth with a speed of 0.600c (relative to the Earth), while spacecraft II, containing professors proctoring the exam, moves at 0.280c (relative to the Earth) directly toward the students. If the professors stop the exam after 50.0 min have passed on their clock, for what time interval does the exam last as measured by (a) the students and (b) an observer on the Earth?arrow_forwardAn enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forwardA spacecraft moves at a speed of 0.900c. If its length is L as measured by an observer on the spacecraft, what is the length measured by a ground observer?arrow_forward
- Consider an electron moving with speed 0.980c. a. What is the rest mass energy of this electron? b. What is the total energyof this electron? c. What is the kinetic energy of this electron?arrow_forwardCalculate the momentum of a proton moving with a speed of (a) 0.010c, (b) 0.50c, (c) 0.90c. (d) Convert the answers of (a)(c) to MeV/c.arrow_forwardIf a spaceship is approaching the Earth at 0.100c and a message capsule is sent toward it at 0.100c relative to Earth, what is the speed of the capsule relative to the ship?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY