A light source recedes from an observer with a speed ν s that is small compared with c . (a) Show that the fractional shift in the measured wavelength is given by the approximate expression Δ λ λ = v S c This phenomenon is known as the redshift because the visible light is shifted toward the red. (b) Spectroscopic measurements of light at λ = 397 nm coming from a galaxy in Ursa Major reveal a redshift of 20.0 nm. What is the recessional speed of the galaxy?
A light source recedes from an observer with a speed ν s that is small compared with c . (a) Show that the fractional shift in the measured wavelength is given by the approximate expression Δ λ λ = v S c This phenomenon is known as the redshift because the visible light is shifted toward the red. (b) Spectroscopic measurements of light at λ = 397 nm coming from a galaxy in Ursa Major reveal a redshift of 20.0 nm. What is the recessional speed of the galaxy?
Solution Summary: The author explains the formula to calculate the observed wavelength of a moving source.
A light source recedes from an observer with a speed νs that is small compared with c. (a) Show that the fractional shift in the measured wavelength is given by the approximate expression
Δ
λ
λ
=
v
S
c
This phenomenon is known as the redshift because the visible light is shifted toward the red. (b) Spectroscopic measurements of light at λ = 397 nm coming from a galaxy in Ursa Major reveal a redshift of 20.0 nm. What is the recessional speed of the galaxy?
From your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?
In a certain bimetallic strip, the brass strip is 0.100% longer than the steel strip at a temperature of 283°C. At what temperature do the two strips have the same length? Coefficients of linear expansion for steel α = 12.0 × 10−6 K−1 and for brass α = 19.0 × 10−6 K−1 (see Table 13.2).
Review Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A
mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the
slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between
the third-order red fringe and the third-order yellow-green fringe?
m = 3
m = 3
m = 0
m = 3
m = 3
Fringes on observation screen
Chapter 39 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.